K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2019

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\) \(\Rightarrow xyz=1\)

\(P=\frac{1}{\frac{1}{x^3}\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\frac{1}{y^3}\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\frac{1}{z^3}\left(\frac{1}{x}+\frac{1}{y}\right)}\)

\(P=\frac{x^3yz}{y+z}+\frac{y^3xz}{x+z}+\frac{z^3xy}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(x;y;z\right)=\left(1;1;1\right)\)

27 tháng 3 2019

b) \(\left(1+a\right).\frac{1}{1+b^2}=\left(1+a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+a\right)\left(1-\frac{b^2}{2b}\right)=1+a-\frac{ab+b}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế được:

\(VT\ge6-\frac{ab+bc+ca+3}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}\)

\(=6-\frac{3+3}{2}=3^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

3 tháng 8 2017

Sửa lại đề : CM : \(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)

Ta có :

\(\frac{1}{b^2+c^2}=\frac{a^2+b^2+c^2}{b^2+c^2}=\frac{b^2+c^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}=1+\frac{a^2}{b^2+c^2}\) 

Mà \(b^2+c^2\ge2bc\) nên \(\frac{1}{b^2+c^2}\le1+\frac{a^2}{2bc}\)(1)

CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{a^2+b^2}\le1+\frac{c^2}{2ab}\left(2\right)\\\frac{1}{c^2+a^2}\le1+\frac{b^2}{c^2+a^2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) tại ta được :

\(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{c^2}{2ab}+\frac{b^2}{2ac}+3=\frac{a^3+b^3+c^3}{2abc}+3\)

=> đpcm

1 tháng 11 2018

HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

1 tháng 11 2018

óc người ak

16 tháng 4 2019

chứng minh gì bạn?