K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Áp dụng BĐT Cauchy

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)\ge9abc\)

\(\Rightarrow\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}\ge3\)

\(\Rightarrow P\ge3+\dfrac{4bc}{\left(b+c\right)^2}\)

Ta cần tìm Min của \(3+\dfrac{4bc}{\left(b+c\right)^2}\)

Không mất tính tổng quát giả sử \(b\ge c\)

\(\Rightarrow b+c\le2b\)\(\Leftrightarrow\left(b+c\right)^2\le4b^2\Leftrightarrow\dfrac{4bc}{\left(b+c\right)^2}\ge\dfrac{c}{b}\)

\(b\ge c\Rightarrow\dfrac{c}{b}\ge1\)

Vậy \(3+\dfrac{4bc}{\left(b+c\right)^2}\ge4\)

Dấu đẳng thức xảy ra khi a = b = c

13 tháng 1 2018

Áp dụng BĐT bunyakovsky và AM -GM ta có:

\(\sqrt{\dfrac{\left[a+\left(b+c\right)\right]\left[bc+a\left(b+c\right)\right]}{abc}}\ge\sqrt{\dfrac{a\left(\sqrt{bc}+b+c\right)^2}{abc}}=\dfrac{\sqrt{bc}+b+c}{\sqrt{bc}}=1+\dfrac{b+c}{\sqrt{bc}}\)

\(LHS\ge1+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{4bc}{\left(b+c\right)^2}\ge1+3\sqrt[3]{\dfrac{4bc\left(b+c\right)^2}{4bc\left(b+c\right)^2}}=4\)

Dấu = xảy ra khi a=b=c

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2017

Lời giải:

Do \(ab+bc+ac=1\) nên:

\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)

\(b^2+1=b^2+ab+bc+ac=(b+a)(b+c)\)

\(c^2+1=c^2+ab+bc+ac=(c+a)(c+b)\)

Do đó:

\(A=a\sqrt{\frac{(b^2+1)(c^2+1)}{a^2+1}}+b\sqrt{\frac{(a^2+1)(c^2+1)}{b^2+1}}+c\sqrt{\frac{(b^2+1)(a^2+1)}{c^2+1}}\)

\(=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+a)(b+c)}}+c\sqrt{\frac{(b+a)(b+c)(a+b)(a+c)}{(c+a)(c+b)}}\)

\(=a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)=2\)

Vậy \(A=2\)

26 tháng 9 2017

cảm ơn bạn nhiều

1 tháng 10 2017

Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)

Dự đoán điểm rơi sẽ có 1 số bằng 0.

Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)

do đó \(ab+bc+ca\ge ab\)\(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)

BDT cần chứng minh tương đương

\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)

BĐT trên hiển nhiên đúng theo AM-GM.

Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )

1 tháng 10 2017

a,b,c không âm