Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có: \(\frac{a^3}{b}+ab\geq 2a^2\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Theo hệ quả của BĐT AM-GM thì:
\(a^2+b^2+c^2\geq ab+bc+ac\)
Do đó, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq ab+bc+ac\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c>0\)
Lời giải:
Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)
Áp dụng bất đẳng thức AM-GM:
\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)
Cũng theo AM-GM
\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)
Dấu $=$ xảy ra khi \(a=b=c=1\)
\(a^5+a+a+a>=4\sqrt[4]{a^8}=4a^2\)
Làm tương tự rồi cộng vế ta được:
\(VT\ge4\left(a^2+b^2+c^2\right)-3\left(a+b+c\right)\ge4\left(a^2+b^2+c^2\right)-3\sqrt{3\left(a^2+b^2+c^2\right)}=4.3-3\sqrt{3.3}=3\)
Ta co: a3b2=(a2b2)a , a2b3=(a2b2)b => a3b2>a2b3( vi a>b) (1)
b3c2=(b2c2)b , b2c3=(b2c2)c => b3c2>b2c3( vi b>c) (2)
c3a2=(a2c2)c , a3c2=(a2c2)a => c3a2<a3c2 ( vi c<a) (3)
Vi b+c>a ( bdt trong tam giac)
=> dpcm
Bai nay phai xet trong tam giac thi moi dung
\(P=\frac{b^2c^2+c^2a^2+a^2b^2}{abc}\Rightarrow P^2=\frac{b^4c^4+c^4a^4+a^4b^4+2a^2b^2c^2\left(a^2+b^2+c^2\right)}{a^2b^2c^2}\)
\(P^2\ge\frac{a^2b^2c^2\left(a^2+b^2+c^2\right)+2a^2b^2c^2}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}=3\)
\(\Rightarrow P\ge\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Câu 1:
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)
=>\(a^3+b^3+c^3>=3abc\)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca=3\)
Do \(a>0\Rightarrow\left(a-1\right)^2\left(a+\frac{1}{2}\right)\ge0\)
\(\Rightarrow a^3-\frac{3}{2}a^2+\frac{1}{2}\ge0\Rightarrow a^3\ge\frac{3}{2}a^2-\frac{1}{2}\)
Tương tự ta có: \(b^3\ge\frac{3}{2}b^2-\frac{1}{2}\) ; \(c^3\ge\frac{3}{2}c^2-\frac{1}{2}\)
Cộng vế với vế:
\(a^3+b^3+c^3\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{3}{2}\ge3.\frac{3}{2}-\frac{3}{2}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a>0 chứ a có >1 đâu mà (a-1)2(a+1/2)\(\ge\)0