K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

\(HELP\)\(MEEEEEEEEEEEEEEEEEEEEEE\)

20 tháng 8 2018

Ta có:   \(a=b^mc^m;\)\(b=c^na^n;\)\(c=a^pb^p\)

Gia sử cả 3 số a, b, c đã cho đều khác 1

\(a=b^mc^m=\left(c^na^n\right)^m\left(a^pb^p\right)^m=a^{mn+pm}b^{mp}c^{mn}=a^{mn+pm}\left(c^na^n\right)^{mp}\left(a^pb^p\right)^{mn}\)

\(=a^{mn+np+2mnp}c^{mnp}b^{mnp}=a^{mn+np+2mnp}\left(b^mc^m\right)^{np}=a^{mn+np+mp+2mnp}\)

Vì  \(0< a\ne1\)và  m, n, p là những số nguyên dương lớn hơn 1 nên không thể  \(mn+np+mp+2mnp=1\)

=>  điều giả sử là sai hay trong 3 số a, b, c phải có ít nhất 1 số bằng 1 

20 tháng 5 2019

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

27 tháng 5 2018

Ta có

\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)

Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)

\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)

Tự làm tiếp

29 tháng 11 2019

Áp dụng BĐT: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

Ta có: \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow0\le a+b+c\le3\) ( vì a,b,c > 0 ) (Dấu ''='' xảy ra khi và chỉ khi a = b = c.)

\(\Rightarrow0\le a+b\le3-c\) (1)

Đặt \(A=\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{8-2\sqrt{ab}}+\frac{1}{8-2\sqrt{bc}}+\frac{1}{8-2\sqrt{ca}}\)

Áp dụng Côsi cho hai số dương a, b ta được:

\(2\sqrt{ab}\le a+b\Rightarrow8-2\sqrt{ab}\ge8-\left(a+b\right)\) (2)

Từ (1) và (2) suy ra

29 tháng 11 2019

giải nhầm sorry

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

20 tháng 7 2019

Bài 1:

Xét số hạng tổng quát \(\frac{1}{\sqrt{2k+1}+\sqrt{2k+3}}=\frac{1}{2}\left(\sqrt{2k+3}-\sqrt{2k+1}\right)\) (với k thuộc N)

Áp dụng vào \(P=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+...+\sqrt{25}-\sqrt{23}\right)=\frac{1}{2}\left(\sqrt{25}-1\right)=2\)

Bài 2: BđT \(\Leftrightarrow\sqrt{b}-\sqrt{a}< \sqrt{b+c}-\sqrt{a+c}\)

\(\Leftrightarrow\frac{b-a}{\sqrt{a}+\sqrt{b}}< \frac{b-a}{\sqrt{a+c}+\sqrt{b+c}}\Leftrightarrow\frac{a-b}{\sqrt{a}+\sqrt{b}}>\frac{a-b}{\sqrt{a+c}+\sqrt{b+c}}\)

Điều này đúng do a > b nên a - b > 0. Mặt khác \(\sqrt{a+c}+\sqrt{b+c}>\sqrt{a}+\sqrt{b}\) (áp dụng tính chất \(\sqrt{a}< \sqrt{a+m}\left(\text{chị tự chứng minh}\right)\text{với a, m}\ge0\)

20 tháng 7 2019

bạn ơi tại sao \(\frac{1}{\sqrt{2k+1}+\sqrt{2k+3}}=\frac{1}{2}\left(\sqrt{2k+3}-\sqrt{2k+1}\right)\)

31 tháng 3 2017

Ta có \(\sum\limits^{ }_{sym}\sqrt{\dfrac{a^4+b^4}{1+ab}}=\sum\limits^{ }_{sym}\sqrt{\dfrac{2\left(a^4+b^4\right)}{2+2ab}}\ge\sum\limits^{ }_{cyc}\dfrac{a^2}{\sqrt{2+2ab}}+\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\)

Sử dụng bất đẳng thức Cauchy-Schwarz và AM-GM ta có:

\(\sum\limits^{ }_{cyc}\dfrac{b^2}{\sqrt{2+2ab}}\ge\dfrac{3}{2}\)

Cộng hai bất đẳng thức ta được:

\(\sqrt{\dfrac{a^4+b^4}{1+ab}}+\sqrt{\dfrac{b^4+c^4}{1+bc}}+\sqrt{\dfrac{c^4+a^4}{1+ac}}\ge3\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)