K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Vì a,b,c,d,m,n thuộc Z   và  a < b < c < d < m < n nên ta có : 

                          a + b < 2a ( 1 )

                         c + d < 2c   (2)

                         m + n < 2m ( 3)

Cộng vế với vế các bđt (1), (2) và (3) ta được :  a + b + c + d + m + n > 2 ( a + c  + m )

                                                                                 => \(\frac{1}{a+b+c+d+m+n}< \frac{1}{2\left(a+c+m\right)}\)

                                                                                =>\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{a+c+m}{2.\left(a+c+m\right)}=\frac{1}{2}\)   ( đpcm ) 

8 tháng 6 2016

xin lỗi mình đánh nhầm dấu ">" thành "<"  mình xin đính chính lại nhé : a + c > 2a (1 )

                                                                                                                               c + d > 2c  (2)

                                                                                                                             m + n > 2m ( 3)

có chút sai xót chỗ này thành thật xin lỗi !

8 tháng 6 2016

a < b => 2a < a + b

c < d => 2c < c + d

m < n => 2m < m + n

=> 2(a + c + m) < a + b + c + d + m + n

=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\) 

=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

 

8 tháng 6 2016

Phân số có tử bé hơn mẫu thì bé hơn 1

1 tháng 8 2017

Ta có :

a < b \(\Rightarrow\)2a < a + b \(\Rightarrow\)\(\frac{a}{a+b}< \frac{1}{2}\)

c < d \(\Rightarrow\)2c < c + d \(\Rightarrow\)\(\frac{c}{c+d}< \frac{1}{2}\)

m < n \(\Rightarrow\)2m < m + n \(\Rightarrow\)\(\frac{m}{m+n}< \frac{1}{2}\)

\(\Rightarrow\)2a + 2c + 2m < ( a + b ) + ( c + d ) + ( m + n ) 

\(\Rightarrow\)2 . (a  + c + nm ) < a + b + c + d + m + n

\(\Rightarrow\)\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

1 tháng 8 2017

\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m< a+b+c+d+m+n\)

\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(\text{đ}pcm\right)\)

31 tháng 5 2015

a < b => 2a < a + b  ;   c < d => 2c < c + d    ; m < n => 2m < m + n

Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó

\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)  

28 tháng 10 2018

Do  a < b < c < d < m < n 

=> 2c < c + d 

m< n => 2m < m+ n 

=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 

Do đó :

(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)