K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

Giải:

Ta có:

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-c-d\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

Từ đó, suy ra:

\(\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-\left(c^3+3c^2d+3cd^2+d^3\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3-3c^2d-3cd^2-d^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=-c^3-3cd\left(c+d\right)-d^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)+3ab\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)

Vậy ...

4 tháng 8 2015

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

a+b+c+d=0

=>c+d=-a-b

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=\left(a+b\right)^3+\left(-a-b\right)^3+3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)

=3(c+d)(ab-cd)

27 tháng 9 2019

Câu hỏi của ✰✰ βєsէ ℱƐƝƝIƘ ✰✰ - Toán lớp 8 - Học toán với OnlineMath

10 tháng 6 2017

Ta có:     a + b + c +d = 0 => a + b + (c+d) = 0

=> a3 + b3 +(c+d)3 = 3ab(c+d)

=> a3 +b3 +c3 +d3 +3cd(c+d) = 3ab(c+d)

=> a3 +b3 +c3 +d3  = 3ab(c+d) – 3cd(c+d) = 3(c+d)(ab – cd).

19 tháng 7 2018

bạn bấm vào câu hỏi tương tự nhé.

19 tháng 7 2018

Ta có :

\(a+b+c+d=0\)

\(\Rightarrow c=-\left(a+b\right)\)

Do đó :

\(\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)\)

\(=-c^3-d^3-3cd\left(c+d\right)\)

\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

Vì \(a+b=-\left(c+d\right)\)

\(\Rightarrow3ab\left(c+d\right)-3cd\left(c+d\right)=3\left(c+d\right)\left(ab-cd\right)\)

22 tháng 6 2017

Tìm trước khi hỏi : Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9 - Học toán với OnlineMath

1 tháng 5 2018

a+b+c+d=0↔a+b=−(c+d)a+b+c+d=0↔a+b=−(c+d)

↔(a+b)3=−(c+d)3↔(a+b)3+(c+d)3=0 ↔ (a+b)3=−(c+d)3↔(a+b)3+(c+d)3=0

↔a3+b3+c3+d3+3(a+b)ab+3(c+d)cd=0 ↔ a3+b3+c3+d3+3(a+b)ab+3(c+d)cd=0

↔a3+b3+c3+d3= 3(c+d)ab−3cd(c+d)= 3(c+d)(ab−cd) ↔ a3+b3+c3+d3= 3(c+d)ab −3cd(c+d)= 3(c+d)(ab−cd)
 

8 tháng 12 2015

Từ  \(a+b+c+d=0\)  \(\Rightarrow\) \(a+b=-\left(c+d\right)\) \(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3-d^3-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)

27 tháng 9 2018

viet sai chinh ta le minh dung dm

1 tháng 12 2018

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0