K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}=x+y+z\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b}=\frac{z^2}{c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)

=> \(x+y+z=x^2+y^2+z^2\)

Suy ra: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zt\right)=x+y+z+2\left(xy+yz+zt\right)\)

=> \(xy+yz+zt=\frac{1}{2}\left(x+y+z\right)^2-\frac{1}{2}\left(x+y+z\right)\)

Đặt x+y+z=t

Ta có: \(xy+yz+zt=\frac{1}{2}\left(t^2-t\right)\)

M=xy+yz+zt=\(\frac{1}{2}\left(t^2-t\right)+2015=\frac{1}{2}\left(t^2-2.t.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+2015=\frac{1}{2}\left(t-\frac{1}{2}\right)^2-\frac{1}{8}+2015\)

\(=\frac{1}{2}\left(t-\frac{1}{2}\right)^2+\frac{16119}{8}>0\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Và $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}$ thế nào hả bạn?