Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM ta có:
\(4\sqrt{ab}=2\sqrt{a.4b}\le a+4b\)
\(4\sqrt{bc}=2\sqrt{b.4c}\le b+4c\)
\(4\sqrt[3]{abc}=\sqrt[3]{a.4b.16c}\le\frac{a+4b+16c}{3}\)
Cộng theo vế 3 BĐT ta được:
\(8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)\le\frac{28}{3}\left(a+b+c\right)\)
\(\Rightarrow P\le\frac{28\left(a+b+c\right)}{3+3\left(a+b+c\right)^2}=\frac{14}{3}-\frac{14\left(a+b+c-1\right)^2}{3\left[\left(a+b+c\right)^2+1\right]}\le\frac{14}{3}\)
\(\Rightarrow Max_P=\frac{14}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow a+b+c=1\)và \(a=4b=16c\)
\(\Leftrightarrow a=\frac{16}{21};b=\frac{4}{21};c=\frac{1}{21}\)
\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)
\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)
\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)
\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
\(=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)
\(=\sqrt{\dfrac{ab}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)=\dfrac{1}{2}\)
\("=" \Leftrightarrow a=b=c=\frac{1}{3}\)
Câu hỏi của lê thị tiều thư - Toán lớp 9 | Học trực tuyến
Mẫu là abc nó lại khác nó dễ hơn thế này nhiều vì khi đó mẫu và tử sẽ hết abc
Áp dụng bđt AM-GM cho 2 số không âm ta có:\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\)
\(=ab\sqrt{1.\left(c-1\right)}+\dfrac{bc\sqrt{9\cdot\left(a-9\right)}}{3}+\dfrac{ca\sqrt{4.\left(b-4\right)}}{2}\)\(\le ab.\dfrac{1+\left(c-1\right)}{2}+bc.\dfrac{9+\left(a-9\right)}{6}+ca.\dfrac{4+\left(b-4\right)}{4}=abc\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}\right)=\dfrac{11abc}{12}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=c-1\\9=a-9\\4=b-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=2\\a=18\\b=8\end{matrix}\right.\)
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
Áp dụng BĐT \(ab\le\frac{a^2+b^2}{2}\)
\(P=\frac{\sqrt{c-1}}{c}+\frac{\sqrt{a-9}}{a}+\frac{\sqrt{b-4}}{b}=\frac{1.\sqrt{c-1}}{c}+\frac{3.\sqrt{a-9}}{3a}+\frac{2.\sqrt{b-4}}{2b}\)
\(\Rightarrow P\le\frac{1+c-1}{2c}+\frac{9+a-9}{6a}+\frac{4+b-4}{4b}=\frac{1}{2}+\frac{1}{6}+\frac{1}{4}=\frac{11}{12}\)
\(\Rightarrow P_{max}=\frac{11}{12}\) khi \(\left\{{}\begin{matrix}a=18\\b=8\\c=2\end{matrix}\right.\)