Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A = 3 ( 3 + 32 + ... + 32004
3A = 32 + 33 + ... + 32005
3A - A = 32005 + 3
2A = 32005 + 3
A = 32005 + 3 : 2
a, 3A = 3(3+32+...+32004)
3A = 32+33+...+32005
3A-A= 32005 + 3
2A = 32005 +3
A = 32005 + 3 / 2
b, A có 2004 số hạng, nhóm A thành các nhóm, mỗi nhóm có 4 số hạng
=>A=(3+32 +33 +34 )+(35+36 +37+38)+...+(32001+32002+32003+32004)
A=(3+32+33+34)+34(3+32+33+34)+...+32000(3+32+33+34)
A=(1+34+...+32000)(3+32+33+34)
A=(1+34+...+32000).180
Vậy A chia hết cho 180 (đpcm)
ta có: A=(3+3^2+3^3+3^4)+....+(3^2001+3^2002+3^2003+3^2004)
=>A=120+...+(3^2000.3+3^2000.3^2+3^2000.3^3+3^2000.3^4)
=>A=120+...+3^2000(3+3^2+3^3+3^4)
=>A=120+...3^2000.120
=>A=(1+....+3^2000).120
vì 120 chia hết cho 120 nên A chia hết cho 120=>A chia hết cho 10
A=3+3^2+....+3^2004
=>A=(3+3^2+3^3)+....+(3^2002+3^2003+3^2004)
=>A=39+....+ tự tính như trên
vì 39 chia hết cho 13 nên A chia hết cho 13
ta có: A chia hết cho 10 và A chia hết cho 13 và (10;13)=1 nên A chia hết cho 10.13=>A chia hết cho 130
vậy....
b) Ta có
A = 3 + 32 + ... + 32004.
=> A = 3 ( 1+ 3 + 32 ) + 34 ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )
=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13
=> A = 13 ( 3 + 34 + ... + 32001) chia hết cho 13.
Lại có :
A = 3 + 32 + ... + 32004.
=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)
=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)
=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.
Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1
=> A chia hết cho 130.
A=3+32+33+......+32004
3A=32+33+......+32005
3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )
2A=32005-3
A=\(\frac{3^{2005}-3}{2}\)
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
a, 3A = 3(3+32+...+32004)
3A = 32+33+...+32005
3A-A= 32005 + 3
2A = 32005 +3
A = 32005 + 3 / 2
b, A có 2004 số hạng, nhóm A thành các nhóm, mỗi nhóm có 4 số hạng
=>A=(3+32 +33 +34 )+(35+36 +37+38)+...+(32001+32002+32003+32004)
A=(3+32+33+34)+34(3+32+33+34)+...+32000(3+32+33+34)
A=(1+34+...+32000)(3+32+33+34)
A=(1+34+...+32000).180
Vậy A chia hết cho 180 (đpcm)
Cho A=3+32+33+...+32004Tính tổng AChứng minh rằng A chia hết cho 130