K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

A=3+3^2+3^3+...+3^100

=>3A=3^2+3^3+3^4+...+3^101

=>3A-A=2A=3^101-3

mà 2A+3=3^n

=>3^101-3+3=3^n

=>3^n=3^101

=>n=101

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

24 tháng 4 2016

A=\(3+3^2+3^3+...+3^{100}\)

3A=\(3^2+3^3+3^4+...+3^{101}\)

3A - A=\(3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)

 2A = \(3^{101}-3\)

 =>\(2A+3=3^n\)

 =>\(3^{101}-3+3=3^n\)

 =>3\(^{101}=3^n\)

=>n=101

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100}A=3+32+33+...+3100 (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101}3A=32+33+...+3100+3101 (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 32A=31013.

Do đó, 2A + 3 = 3^{101}2A+3=3101

Mà theo đề bài 2A + 3 = 3^n2A+3=3n.

Vậy n = 101n=101.

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

30 tháng 9 2015

A = 3100 + 3

30 tháng 9 2015

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+...+3^{100}+3^{101}\)

\(3A-A=3^2+3^3+...+3^{100}+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(2A+3=3n\)

\(\Rightarrow3^{101}-3+3=3n\)

\(\Rightarrow3^{101}=3n\)

\(\Rightarrow n=3^{100}\)

 

 

30 tháng 9 2015

3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 

26 tháng 9 2015

em tính 3A đi

sao đok e lấy 3A-A là đc 2A

tiếp theo chéc e cx bik lm rồi nhỉ, tự lm cho quẹn

A=3+3^2+3^3+........+3^100

3A=3^2+3^3+........+3^101

3A-A=(3^2+3^3+........+3^101)-(3+3^2+3^3+........+3^100)

2A=3^101-3

suy ra: n=3^101-3+3=3^101

**** cho chị nhé! (bài này dễ, em cố gắng luyện nhìu nhé, lm hoài sẽ cok nhìu dạng nâng cao khó hơn)

Mần^o^

7 tháng 1 2021

dap an la n =101

2 tháng 10 2015

A = 3+32+33+...+3100

3A = 32+33+34+...+3101

2A = 3A - A = 3101 - 3

=> 2A + 3 = 3101

Theo đề bài: 2A + 3 = 3n

=> 3101 = 3n

=> n = 101

6 tháng 12 2015

3A = 3^2+3^3+...+3^101

3A-A=3^2+3^3+...+3^101-(3+3^2+3^3+...+3^100)

2A=3^101-A

2A+A=3n

Suy ra : 3^101-3+3=3n

Suy ra : 3^101=3n

Suy ra : n=3^100

bấm đúng cho mik vs nha

 

6 tháng 12 2015

\(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+....+3^{101}\)

\(3A-A=\left(3^2-3^2\right)+....+\left(3^{100}-3^{100}\right)+3^{101}-3\)

2A = 3101 - 3

\(A=\frac{3^{101}-3}{2}\)

2A + 3 = \(\frac{3^{101}-3}{2}.2+3=3^{101}-3+3=3^{101}\)

Vậy n = 101