Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)
GTNN B=-1 khi x=-2
a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)
Chọn mình nha mình sẽ làm típ 1 bài nữa
\(A=x^2+4x+100\)
\(A=x^2+2.x.2+2^2+96\)
\(A=\left(x+2\right)^2+96\)
\(\left(x+2\right)^2+96\le0\)
\(\left(x+2\right)^2+96\le96\)
\(\Leftrightarrow A\le96\)
\(A_{min}\Leftrightarrow A=10\)
Dấu "=" xảy ra : \(\left(x+2\right)^20\)
\(x+2=0\)
\(x=-2\)
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75
ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75 với mọi x.
Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5
Vậy Amin=2.75 khi x=1.5
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi
\(A-B=x^4-x^2+3=\left(x^2-\frac{1}{2}\right)^2+3-\frac{1}{4}\)
GTLN không có (muốn có thêm DK cho x)
GTNN=3-1/4=11/4 khi \(x=+-\frac{\sqrt{2}}{2}\)