Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
A = 30 + 31 + 32 + ... + 32017
3A = 31 + 32 + 33 + ... + 32018
3A - A = (31 + 32 + 33 + ... + 32018) - (30 + 31 + 32 + ... + 32017)
2A = 32018 - 30
Ta thấy: 32018 - 30 < 32018 \(\Rightarrow\) 2A < B. \(\Rightarrow\) A < B
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
Câu 2: A = \(^{1+2+2^2+2^{ }^3+...+2^{2017}}\)
2A = \(2+2^2+2^3+...+2^{2018}\)
Suy ra 2A - A =\(2^{2018}-1\) Do đó A < B
1. Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=t\Rightarrow a=2016t,b=2017t,c=2018t\)
\(\left(a-c\right)^3=\left(2016t-2018t\right)^3=\left(-2t\right)^3=-8t^3\)
\(8\left(a-b\right)^2\left(b-c\right)=8\left(2016t-2017t\right)^2\left(2017t-2018t\right)=8.\left(-t\right)^2.\left(-t\right)=-8t^3\)
Vậy \(\left(a-c\right)^3=8\left(a-b\right)^2\left(b-c\right)\)
Ta có \(A=1+2+2^2+2^3+...+2^{2017}\)
Suy ra\(2.A=2+2^2+2^3+2^4+....+2^{2018}\)
Khi đó \(2A-A=2+2^2+2^3+2^4+....+2^{2018}-\left(1+2+2^2+2^3+....+2^{2017}\right)\)
Hay \(A=2^{2018}-1\)
Ta thấy \(A=2^{2018}-1\); \(B=2^{2018}-1\)nên \(A=B\)
Vậy \(A=B\)
\(\frac{B}{A}=\frac{\frac{2^{2017}-3}{2^{2016}-1}}{\frac{2^{2018}-3}{2^{2017}-1}}=\frac{2^{2017}-3}{2^{2016}-1}\cdot\frac{2^{2017}-1}{2^{2018}-3}\)
\(=\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}\)
Ta có: 4.22017 = 22019
3.22016 + 22018 < 4.22016 + 22018 = 2.22018 = 22019
=> 4.22017 > 3.22016 + 22018
=> - 4.22017 < - 3.22016 - 22018
\(\Rightarrow\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}< 1\)
=> B < A
Ax2=2+2^2+2^3+...+2^2018
Ax2 - A =(2+2^2+2^3+...+2^2018)-(2^0+2^1+2^2+...+2^2017)=2^2018-1
Mà 2^2018-1<2^2018 nên A<b