K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

\(A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=2^{2018}-1hayA=2^{2018}-1\)

2; 3 tuong tu

30 tháng 1 2019

1) A = 1 + 2 + 22 + 23 + .... + 22018

2A = 2 + 22 + 23 + 24 + ..... + 22019

2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )

Vậy A = 22019 - 1

2) B = 1 + 3 + 32 + 33 + ..... + 32018

3A = 3 + 32 + 33 + ...... + 32019

3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )

2A = 32019 - 1

Vậy A = ( 32019 - 1 ) : 2

3) C = 1 + 4 + 42 + 43 + ...... + 42018

4A = 4 + 42 + 43 + ...... + 42019

4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )

3A = 42019 - 1

Vậy A = ( 42019 - 1 ) : 3

25 tháng 12 2019

Đề sai à bạn !

25 tháng 12 2019

Đề sai ! Sửa \(\frac{1}{2}\)thành \(\frac{3}{2}\)

                                                                      Bài giải

\(A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2018}\)

\(A=\frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+...+\frac{3^{2018}}{2^{2018}}\)

\(\frac{2}{3}A=1+\frac{3}{2}+\frac{3^2}{2^2}+...+\frac{3^{2017}}{2^{2017}}\)

\(A-\frac{2}{3}A=\frac{3^{2018}}{2^{2018}}-1\)

\(\frac{1}{3}A=\frac{3^{2018}}{2^{2018}}-1\)

\(A=\left(\frac{3^{2018}}{2^{2018}}-1\right)\cdot3=\frac{3^{2019}}{2^{2018}}-3\)

\(B=\left(\frac{3}{2}\right)^{2019}\text{ : }2=\frac{3^{2019}}{2^{2019}}\cdot\frac{1}{2}=\frac{3^{2019}}{2^{2020}}\)

\(B-A=\frac{3^{2019}}{2^{2020}}-\frac{3^{2019}}{2^{2018}}+3=3^{2019}\left(\frac{1}{2^{2018}}\cdot\frac{1}{2^4}-\frac{1}{2^{2018}}\right)+3=3^{2019}\left[\frac{1}{2^{2018}}\left(\frac{1}{2^4}-1\right)\right]+1\)

\(=3^{2019}\cdot\frac{1}{2^{2018}}\cdot\frac{-15}{16}+3\)

15 tháng 7 2018

a)bạn nhân lũy thừa 3 lên là tính đc, bài c thì tương tự

còn bài b mk ko bt

15 tháng 7 2018

bạn làm ra đc ko

25 tháng 9 2019

A=1+2+22+23+...+22018+22019

>2A=2(1+2+22+23+...+22018+22019)

=>2A=2+22+23+...+22018+22019

=>2A-A=(2+22+23+...+22019+22020)-(1 + 2 + 22 + 23 + ... + 22018 + 22019)

=>A=22020-1

B=1 + 32 + 34 + 36 +...+ 32018 + 32020

=>9B=3(1 + 32 + 34 + 36 +...+ 32018 + 32020)

=>9B=3+32 + 34 + 36 +...+ 32020 + 32022

=>9B-B=(3+32 + 34 + 36 +...+ 32018 + 32020)-(1 + 32 + 34 + 36 +...+ 32018 + 32020)

=.8B=32022-1

=>B=32022:8-1

25 tháng 9 2019

đề câu B sai nhé

9 tháng 10 2018

\(A=1+3^1+3^2+...+3^{2017}\)

\(3A=3+3^2+3^3+...+3^{2018}\)

\(3A-A=\left(3+3^2+3^3+...+3^{2018}\right)-\left(1+3^1+3^2+...+3^{2017}\right)\)

\(2A=3^{2018}-1\)

\(A=\frac{3^{2018}-1}{2}\)

\(\Rightarrow\)\(B-A=\frac{3^{2018}}{2}-\frac{3^{2018}-1}{2}=\frac{3^{2018}-3^{2018}+1}{2}=\frac{1}{2}\)

Vậy \(B-A=\frac{1}{2}\)

Chúc bạn học tốt ~ 

9 tháng 10 2018

ta có: A = 1 + 31 + 32 + ...+ 32017

=> 3A = 31 + 32 + 33 + ....+ 32018

=> 3A - A = 32018 - 1

\(\Rightarrow A=\frac{3^{2018}-1}{2}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{3^{2018-1}}{2}}{\frac{3^{2018}}{2}}=\frac{\frac{3^{2018}}{2}}{\frac{3^{2018}}{2}}-\frac{1}{\frac{3^{2018}}{2}}=1-\frac{1}{\frac{3^{2018}}{2}}\)

11 tháng 1 2018

3A = 3+3^2+....+3^2018

2A=3A-A=(3+3^2+....+3^2018)-(1+3+3^2+....+3^2017) =  3^2018-1

=> A = (3^2018-1)/2

=> B-A = 3^2018-3^2018+1/2 = 1/2

Tk mk nha