K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

$A=(1+2)+(2^2+2^3)+....+(2^{2020}+2^{2021})$

$=3+2^2(1+2)+....+2^{2020}(1+2)$

$=3+3.2^2+....+3.2^{2020}$

$=3(1+2^2+....+2^{2020})\vdots 3$
Ta có đpcm.

8 tháng 10 2015

A=(1+2)+(22+23)+...+(210+211)

A=3+22.(1+2)+...+210.(1+2)

A=3+22.3+...+210.3

A=3+(22+...+210)

=>A:cho 3

tick mk nha

11 tháng 10 2018

 A = 1 + 2 + 2+ ... + 211

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{10}+2^{11}\right).\)

\(=3+2^2\left(1+2\right)+2^4\left(1+2\right)+...+2^{10}\left(1+2\right)\)

\(=3\left(1+2^2+2^4+...+2^{10}\right)⋮3\)

11 tháng 10 2018

A=(1+2)+(2^2+2^3)+...+(2^10+2^11)

  = 3+2^2(1+2)+...+2^10(1+2)

  =3+2^2.3+...+2^10.3

  = 3(1+2^2+...+2^10) chia hết cho 3

=> tổng A chia hết cho 3

22 tháng 10 2015

A=(1+2)+(22+23)+...+(210+211)

A=3+22(1+2)+...+210(1+2)

A=3+22.3+...+210.3

A=3(1+22+...+210)chia hết cho 3

=>1+2 +22+23+....+211 chia hết cho 3

6 tháng 10 2018

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+...+3^{97}.13\)

\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)

Vậy...

6 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)

\(A=3\cdot13+...+3^{97}\cdot13\)

\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)

9 tháng 10 2015

4 / tổng sau có chia hết cho 9

vì 2+4+8+16+32+64

ta nhóm : ( 2+16 )+ ( 4+32) + 63+1+8

= 18+36+63+9

vì 18 chia hết cho 9

  36 chia hết cho 9

36 chia hết cho 9

9 chia hết cho 9

vậy tổng chia hết cho 9

29 tháng 11 2016

A = 2 + 2+ 23 + 2+ ... + 29 + 210

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 29 + 210 )

A = ( 1 + 2 ) . 2 + ( 1 + 2 ) . 23 + ... + ( 1 + 2 ) . 29

A = 3 . 2 + 3 . 23 + ... + 3 . 29

A = 3 . ( 2 + 23 + ... + 29 )

=> A chia hết cho 3

29 tháng 11 2016

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+210\right)=2\left(2^0+2^1\right)+2^3\left(2^0+2^1\right)+... \)

\(2^0=1,2^1=2,2^0+2^1=3\)

12 tháng 9 2021

A = 1 + 3 + 32 + 33 + ... + 32021

= (1 + 3) + 32(1 + 3) + .... + 32020(1 + 3) 

= (1 + 3)(1 + 32 + ... + 32020

= 4(1 + 32 + ... + 32020\(⋮\)4 (ĐPCM) 

10 tháng 8 2016

Ta có : 

A=2 + 2+ 2+ ...... + 299 + 2100

=> A = (2 + 22) + (2+ 24) + ...... + (299 + 2100)

=> A = 2.(1 + 2) + 23.(1 + 2) + .... + 299.(1 + 2)

=> A = 2.3 + 23.3 + .... + 299.3

=> A = 3.(2 + 23 + .... + 299) chia hết cho 3(đpcm)

10 tháng 8 2016

A=2+22+23+24+...+299+2100

=(2+22)+(23+24)+...+(299+2100)

=2.(1+2)+23.(1+2)+...+299.(1+2)

=2.3+23.3+...+299.3

=3.(2+23+...+299) chia hết cho 3

Chúc bạn học giỏi nha!!!!

K cho mik vs nhé toikomuonan

20 tháng 12 2016

A=2+22+23+24+...+29

=(2+22+23)+(24+25+26)+(27+28+29)

=2.7+24.7+27.7 (vì 2+22+23=14=2.7 các phép tính sau cũng như zậy)

=7.(2+24+27)

=>A chia hết cho 7

k cho mình nhé

20 tháng 12 2016

Ta có A = 2  ( 1+2+4) + 24(1+2+4) + 27(1+2+4)

            =2*7 + 24*7 + 27*7

            = 7 (2+24+27) chia hết cho 7

Vậy A chia hết cho 7