K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7.

Ta chia thành 2 nhóm:

Nhóm 1: dư 1 và dư 7

Nhóm 2: dư 3 và dư 5

Có 2 trường hợp TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên.

Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)

TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8. 

9 tháng 3 2016

cau tra loi ?

6 tháng 9 2017

Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)

Xét số nguyên tố có dạng: \(6k+1\)

Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.

Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.

Xét số nguyên tố dạng \(6k-1\)

Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.

Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.

\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)

Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.