\(\widehat{AOB}=\widehat{BOC}=\widehat{COA}\). Chứng minh: c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Ta có hình vẽ 

A B C O D

Gọi OD là tia đối của tia OA

Ta có \(\widehat{AOB}+\widehat{BOC}+\widehat{AOC}=360^o\)

Mà \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}\)suy ra \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}=360^o:3=120^o\)

Vì OA là tia đối của tia OD suy ra \(\widehat{AOB}+\widehat{BOD}=180^o\)( hai góc kề bù (

Mà \(\widehat{AOB}=120^o\)nên \(\widehat{BOD}=60^o\)

Ta thấy tia OD nằm giữa tia OB và tia OC nên \(\widehat{BOD}+\widehat{DOC}=\widehat{BOC}\)

Mà \(\widehat{BOC}=120^o;\widehat{BOD}=60^o\)nên \(\widehat{DOC}=60^o\)

Vì \(\widehat{DOC}=\widehat{DOB}=60^o\)và tia OD nằm giữa tia OB và tia OC nên OD là tia phân giác của góc BOC

Khi đó tia đối của tia OA là tia phân giác của góc BOC

Tương tự tia đối của tia OB;OC cũng là tia phân giác của góc AOC và góc AOB 

Vậy...

3 tháng 9 2018

Cảm ơn bạn Mon nhìu nha

Mặc dù không đầy đủ lắm nhưng mình coi đó là 1 gợi ý lớn cho mình

1 lần nữa cảm ơn!