Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0\)
\(\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Mà \(\left(x+1\right)^2\ge0\)
\(\left(y+1\right)^2\ge0\)
\(\left(z+1\right)^2\ge0\)
\(\Rightarrow x+1=y+1=z+1=0\)
\(\Rightarrow x=y=z=-1\)
\(\Rightarrow P=1+1+1=3\)
Ta có : \(x^2+2y+1=0;y^2+2z+1=0;z^2+2x+1=0\)
\(\Rightarrow x^2+2y+1=y^2+2z+1=z^2+2x+1\)
\(\Rightarrow x^2+2y+1-y^2-2z-1-z^2-2x-1=0\)
\(\Rightarrow\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x-1\right)^2-\left(y-1\right)^2-\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-1=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)
Thay \(x=1;y=1;z=-1\)vào A ta có :
\(A=1^{2015}+1^{2016}+\left(-1\right)^{2017}=1+1-1=1\)
Vậy A = 1
Từ \(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{cases}\left(2\right)}\)
Từ \(\left(1\right)\)và \(\left(2\right)\):
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\)
\(\Rightarrow x=y=z=-1\)
\(\Rightarrow A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1+1-1=-1\)
Vậy \(A=-1\)
Cô ơi em có cách khác ạ :)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
Dấu "=" xảy ra tại x=y=z=0
Khi đó T=0
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
<=> \(\left(a^2+b^2+c^2\right)\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
<=> \(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\frac{x^2}{a^2}+\left(a^2+b^2+c^2\right)\frac{y^2}{b^2}+\left(a^2+b^2+c^2\right)\frac{z^2}{c^2}\)
<=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
vì a, b , c khác 0 nên \(\frac{\left(b^2+c^2\right)}{a^2};\frac{\left(c^2+a^2\right)}{b^2};\frac{\left(b^2+a^2\right)}{c^2}\ne0\)
\(\frac{\left(b^2+c^2\right)}{a^2}x^2\ge0;\frac{\left(a^2+c^2\right)}{b^2}y^2\ge0;\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x, y, z
=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x; y; z
Do đó: \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
=> x = y = z = 0
Vậy T = 0
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
Ta có
\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)
Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)
Dấu = xảy ra khi x = y = z = 0
Với x = y = z = 0 thì
\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)
\(\Leftrightarrow0=0\)(đúng)
\(\Rightarrow\)ĐPCM
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(1-1\right)\)(vì a-b=1)
\(F=a^2\left(a+1\right)-b^2\left(b-1\right)+ab\)
\(F=a^3+a^2-b^3+b^2+ab\)
\(F=\left(a^3-b^3\right)+a^2+b^2+ab\)
\(F=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
\(F=\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)(vì a-b=1)
\(F=2\left(a^2+ab+b^2\right)\)
\(F=2\left(a^2-2ab+b^2+3ab\right)\)
\(F=2\left(\left(a-b\right)^2+3ab\right)\)
\(F=2\left(1+3ab\right)\)
\(F=2+6ab\)
ta có x+y+z=0
=> \(\left(x+y+z\right)^2=0\)
\(< =>x^2+y^2+z^2+2xy+2xz+2yx=0\)
\(< =>x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(< =>x^2+y^2+z^2+2.0=0\)(vì xy+xz+yz=0)
\(< =>x^2+y^2+z^2=0\)
\(< =>\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}< =>x=y=z=0}\)
thay x=y=z=0 vào
\(K=\left(x-1\right)^{2014}+y^{2015}+\left(z+1\right)^{2016}\)
\(K=\left(0-1\right)^{2014}+0^{2015}+\left(0+1\right)^{2016}\)
\(K=1+0+1=2\)
\(\)
Do x=y=z=-1 nên ;
B=1+1+1=3;
Ban k nha...còn khi nào tìm đc lờ giải mình báo cho bạn..