Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@ Mashiro Shiina
@Akai Haruma
@Nguyễn Thanh Hằng
@Đẹp Trai Không Bao Giờ Sai
\(\text{Ta có : }\dfrac{x}{y+z}=\dfrac{y}{x+z}=\dfrac{z}{y+x}\\ \Rightarrow\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{y+z}{x}=\dfrac{x+z}{y}=\dfrac{y+x}{z}\\ =\dfrac{\left(y+z\right)+\left(x+z\right)+\left(y+x\right)}{x+y+z}\\ =\dfrac{y+z+x+z+y+x}{x+y+z}\\ =\dfrac{\left(y+y\right)+\left(z+z\right)+\left(x+x\right)}{x+y+z}\\ =\dfrac{2y+2z+2x}{x+y+z}\\ =\dfrac{2\left(x+y+z\right)}{x+y+z}\\ =2\\ \)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z}{x}=2\\\dfrac{x+z}{y}=2\\\dfrac{y+x}{z}=2\end{matrix}\right.\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=2+2+2=6\)
Vậy \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{y+x}{z}=6\)
Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!
Áp dụng t/c DTSBN ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)
=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)
=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)
=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)
=> x+y+z = 1/2 (4)
Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)
=> 2x = 1/2-x+1
=> 3x = 3/2 => x=1/2
Ta có: Từ (2) => 2y = x+z+1
=> 2y + y = x+y+z+1
=> 3y = 1/2+1 (theo 4) => 3y=3/2
=> y=1/2
Ta có : Từ (4) => x+y+z=1/2
=>1/2 + 1/2 +z = 1/2
=> z=-1/2
Vậy ( x;y;z)=(1/2;1/2;-1/2)
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\)
\(\Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\\\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+y+z\right)=y\left(x+y+z\right)\\y\left(x+y+z\right)=z\left(x+y+z\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+z\right)=0\\\left(y-z\right)\left(x+y+z\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y+z=0\end{matrix}\right.\\\left[{}\begin{matrix}y=z\\x+y+z=0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y=z\\x+y+z=0\end{matrix}\right.\)
\(\circledast\) Với \(x=y=z\) thì \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
\(\circledast\) Với \(x+y+z=0\) thì\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
Khi đó \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\dfrac{-xyz}{xyz}=-1\)
Có: \(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z-x}{x}=\dfrac{x+z-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\)
Vì
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y+z}{z}\)
\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2=\)
\(\dfrac{y+z+x}{x}=\dfrac{z+x+y}{y}=\dfrac{x+y+z}{z}\)
\(\Rightarrow\)x=y=z\(\Rightarrow\)\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\)
\(\Rightarrow\)B=(1+1)(1+1)(1+1)=8
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Sai đề chỗ p/s cuối. Xét 2 t/h.
Oáp Z_z có gì mai ns nhé!
mk ko làm cụ thể nhưng chỉ nêu hướng lm thôi nhé
bn áp dụng tích chất dãy tỉ số bằng nhau vào giả thiết, ra 1/3
sau đó suy ra x = (y+z+t)/3, y,z,t cũng làm tương tự
sau đó bạn quy đồng các mẫu của P
sau khi phân tích bn sẽ lấy kq vừa tính đc phần trên
mk nghĩ kết quả ra là 15 nhưng có thể sai
chúc bn may mắn
+) Nếu \(x+y+z\ne0\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)
\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)
\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)
+) Nếu \(x+y+z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)
Vậy ..
Hằng à,t chưa thấy đứa này ngu như mày
\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j