K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Áp dung BĐT HoIder ta có

\(\left(1+1+1\right)\left(1+1+1\right)\left(x^3+y^3+z^3\right)\ge\left(x+y+z\right)^3\)

\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge1\)

\(\Leftrightarrow x^3+y^3+z^3\ge\frac{1}{9}\)

"=" <=> \(x=y=z=\frac{1}{3}\)

8 tháng 3 2018

chó thắng éo bít gì cx chọn sai khi người ta làm đúng. Chó kiki

5 tháng 11 2019

\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\ge x+1-\frac{xy+y}{2}\)

Tương tự ta có:

\(\frac{y+1}{z^2+1}\ge y+1-\frac{yz+z}{2}\)

\(\frac{z+1}{1+x^2}\ge z+1-\frac{zx+x}{2}\)

Cộng vế theo vế ta có:

\(Q\ge3+\left(x+y+z\right)-\frac{x+y+z+xy+yz+zx}{2}\)

\(=3+\frac{x+y+z-xy-yz-zx}{2}\)

Có BĐT phụ sau:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( tự cm )

\(\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(P\ge3\)

Dấu "=" xảy ra tại \(x=y=z=1\)

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)

\(Q=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}+\frac{1}{1+x^2}\)

Ta có \(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\)

Tương tự \(\frac{y}{1+z^2}\ge y-\frac{yz}{2}\)

                    \(\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)

Lại có \(\frac{1}{1+y^2}=\frac{y^2+1-y^2}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)

Tương tự \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)

\(\frac{1}{1+z^2}\ge1-\frac{z}{2}\)

Cộng từng vế các bđt trên ta được 

\(Q\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}+3-\frac{x+y+z}{2}\)\(=\frac{9}{2}-\frac{3}{2}=3\)

Dấu "=" xảy ra khi x=y=z=1

20 tháng 12 2017

Bạn ơi đề hình như là tìm GTLN 

Xét x/x+1 < = x/x+x+y+z = x/(x+y)+(x+z)

Áp dụng bđt 1/a+b < = 1/4.(1/a + 1/b) với a,b > 0 thì

x/x+1 < = x/4.(1/x+y + 1/x+z) = 1/4.(x/x+y + x/x+z)

Tương tự : y/y+1 < =  1/4.(y/x+y + y/y+z) ; z/z+! < = 1/4.(z/z+x + z/y+z)

=> M < = 1/4.(x/x+y + y/x+y + y/y+z + z/y+z + z/x+z + x/z+x) = 1/4.(1+1+1) = 3/4

Dấu "=" xảy ra <=> x+y+z = 1 và x=y=z <=> x=y=z=1/3

Vậy GTLN của M = 3/4 <=> x=y=z=1/3

k mk nha

3 tháng 6 2018

các bạn ơi giải giúp mình đi

3 tháng 6 2018

Bn viết lại đề đi