Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phần này dễ, bạn cứ làm theo hướng của phần b là được. Mình sẽ làm phần b khó hơn.
b) Ta có: a3-a = a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số tự nhiên liên tiếp nên
a.(a-1).(a+1) chia hết cho 3.
=> a3- a chia hết cho 3.
Chứng minh tương tự ta có b3 - b chia hết cho 3 và c3 - c chia hết cho 3 với mọi b,c thuộc N.
=> a3+b3+c3 - (a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc N.
Do đó nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.
Tớ làm thêm một cách cho câu b nhé ;)
Ta có: \(a^3+b^3⋮3\Rightarrow a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2⋮3\) \(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)⋮3\)
Do a và b là các số tự nhiên => \(3ab\left(a+b\right)⋮3=>\left(a+b\right)^3⋮3\)
=> a+b chia hết cho 3
1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)
Có \(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)
\(\Rightarrow n^3+11n⋮6\)
2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)
\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)
\(\Rightarrow n^3-19n⋮6\)
Câu 2:
Tham khảo ở đây
Câu hỏi của Le Thi Hong Van - Toán lớp 6 - Học toán với OnlineMath
Ta có: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(3a^2-3a\right)+\left(3b^2-3b\right)+\left(3c^2-3c\right)+4\left(a+b+c\right)\)
\(=a\left(a+1\right)\left(a-1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)+3a\left(a-1\right)+3b\left(b-1\right)+3c\left(c-1\right)+4\left(a+b+c\right)\)
Ta thấy: \(\hept{\begin{cases}a\left(a-1\right)\left(a+1\right)⋮6\\b\left(b-1\right)\left(b+1\right)⋮6\\c\left(c-1\right)\left(c+1\right)⋮6\end{cases}}\)(1)
\(\hept{\begin{cases}3a\left(a-1\right)⋮6\\3b\left(b-1\right)⋮6\\3c\left(c-1\right)⋮6\end{cases}}\)(2)
\(4\left(a+b+c\right)⋮6\)(3)
Từ (1),(2),(3) ta suy ra \(S⋮6\)