Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
\(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau : \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình ta có:
\(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\)
\(\Leftrightarrow xy-xz+y^2-z^2=0\)
\(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
\(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
\(x^2+y^2+z^2=1\)\(\Leftrightarrow\)\(x^2=1-\left(y^2+z^2\right)\le1\)\(\Leftrightarrow\)\(-1\le x\le1\)\(\Leftrightarrow\)\(0\le1-x\le2\)
Tương tự, ta cũng có \(0\le1-y\le2;0\le1-z\le2\)
Lại có : \(x^2+y^2+z^2-x^3-y^3-z^3=1-1\)
\(\Leftrightarrow\)\(x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)
Mà \(1-x;1-y;1-z\ge0\) nên \(x^2\left(1-x\right);y^2\left(1-y\right);z^2\left(1-z\right)\ge0\)
\(\Leftrightarrow\)\(x^2\left(1-x\right)=y^2\left(1-y\right)=z^2\left(1-z\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=y=z=0\left(loai\right)\\x=y=z=1\left(nhan\right)\end{cases}}\)
\(\Rightarrow\)\(P=xyz=1.1.1=1\)
...
\(\hept{\begin{cases}xy+x+y=3< =>xy+x+y+1=4< =>\left(x+1\right)\left(y+1\right)=4\left(1\right)\\yz+y+z=8< =>yz+y+z+1=9< =>\left(y+1\right)\left(z+1\right)=9\left(2\right)\\xz+x+z=15< =>xz+x+z+1=16< =>\left(x+1\right)\left(z+1\right)=16\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3):
\(=>\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=4.9.16=576=24^2\)
Do x,y,z dương =>(x+1)(y+1)(z+1)=24
từ (1)=>z+1=24:4=6=>z=5
từ (2)=>x+1=\(\frac{8}{3}\)=>x=\(\frac{5}{3}\)
từ (3)=>y+1=\(\frac{3}{2}\)=>y=\(\frac{1}{2}\)
\(=>P=x+y+z=5+\frac{5}{3}+\frac{1}{2}=\frac{43}{6}\)
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)
\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)
\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)
Lại có: \(x+y+z=3\)
\(\Rightarrow\left(x+y+z\right)^2=3^2\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)
Mà: \(x^2+y^2+z^2=17\)
\(\Rightarrow17+2xy+2yz+2xz=9\)
\(\Rightarrow2xy+2yz+2xz=-8\)
\(\Rightarrow xy+yz+zx=-4\)(2)
Thay (2) vào (1) ta có:
\(3.\left(-4\right)=xyz\)
\(xyz=-12\)
Vậy \(xyz=-12\)
Tham khảo nhé~
Câu hỏi của Minh Triều - Toán lớp 8 - Học toán với OnlineMath
Em xem bài làm tương tự ở link này nhé!!! Chú ý thay kết quả khác nhé!