K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2021

\(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)=9\Rightarrow xy+yz+zx\ge3\)

\(2\left(x^2+y^2\right)-xy\ge\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2=\dfrac{3}{4}\left(x+y\right)^2\)

Tương tự và nhân vế với vế:

\(VT\ge\dfrac{27}{64}\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\)

Mặt khác ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)

\(\ge\left(x+y+z\right)\left(xy+yz+xz\right)-\dfrac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)

\(\Rightarrow VT\ge\dfrac{27}{64}.\dfrac{64}{81}.3\left(xy+yz+zx\right)^3\ge3^3=27\) (đpcm)

17 tháng 8 2021

em cảm ơn

 

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).

12 tháng 12 2018

Thấy cái đề mà thấy khiếp ...

Ta có : \(x^2-xy+y^2=\frac{3}{4}\left(x^2-2xy+y^2\right)+\frac{1}{4}\left(x^2+2xy+y^2\right)\)

                                       \(=\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y\right)^2\ge\frac{1}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\frac{x+y}{2}\)

Tương tự \(\sqrt{y^2-yz+z^2}\ge\frac{y+z}{2}\)

                \(\sqrt{z^2-zx+x^2}\ge\frac{x+z}{2}\)

Do đó : \(2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{x+z}{x+z+2y}\)

\(\Rightarrow2S+3\ge\left(1+\frac{x+y}{x+y+2z}\right)+\left(1+\frac{y+z}{y+z+2x}\right)+\left(1+\frac{x+z}{x+z+2y}\right)\)

                       \(=2\left(x+y+z\right)\left(\frac{1}{x+y+2z}+\frac{1}{y+z+2x}+\frac{1}{x+z+2y}\right)\)

                                                         \(\ge2\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}\)\(=\frac{9}{2}\)

                                                          (Áp dụng bđt Cô-si dạng engel cho 3 số)

\(\Rightarrow2S+3\ge\frac{9}{2}\)

\(\Rightarrow S\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Vậy ..............

    

17 tháng 2 2022

Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)

\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)

Lại có  \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)

=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky) 

Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)

Đặt x + y = a ; y + z = b ; x + z = c

Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)

=> \(P\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x = y = z 

16 tháng 2 2022

bài 8 : bỏ dấu hoặc  rồi tính 

a;( 17 - 299) + ( 17 - 25 + 299)

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

3 tháng 9 2018

hình như thiếu cái gì đó

Đề bài đủ rồi bạn nhé.

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)