Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần điều kiện \(a;b;c\) có ít nhất 2 số khác 0
- Với \(a=0\Rightarrow x=-\frac{c}{b}\) mà \(6b+19c=0\Rightarrow-\frac{c}{b}=\frac{6}{19}\Rightarrow x=\frac{6}{19}>0\)
- Với \(c=0\Rightarrow2a+6b=0\Rightarrow-\frac{b}{a}=\frac{1}{3}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{b}{a}=\frac{1}{3}>0\end{matrix}\right.\)
- Với \(abc\ne0\)
\(2a+6b+19c=0\Rightarrow2\left(a+3b\right)=-19c\Rightarrow a+3b=-\frac{19}{2}c\)
Đặt \(f\left(x\right)=ax^2+bx+c\)
Ta có: \(f\left(0\right)=c\) ; \(f\left(\frac{1}{3}\right)=\frac{a}{9}+\frac{b}{3}+c\)
\(\Rightarrow f\left(0\right).f\left(\frac{1}{3}\right)=c\left(\frac{a}{9}+\frac{b}{3}+c\right)=\frac{1}{9}c\left(a+3b+9c\right)\)
\(=\frac{1}{9}c\left(-\frac{19}{2}c+9c\right)=-\frac{1}{18}c^2< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{1}{3}\right)\)
Vậy phương trình luôn có một nghiệm dương
Tham khảo:
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
a/ Đề không rõ ràng bạn
Từ câu b trở đi, dễ dàng nhận ra tất cả các hàm số đều liên tục trên R
b/ Xét \(f\left(x\right)=x^3+3x^2-1\)
Ta có: \(f\left(-3\right)=-1\) ; \(f\left(-2\right)=3\)
\(\Rightarrow f\left(-3\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-3;-2\right)\)
\(f\left(0\right)=-1\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;0\right)\)
\(f\left(1\right)=3\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
\(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm phân biệt
c/\(f\left(x\right)=m\left(x-1\right)^3\left(m^2-4\right)+x^4-3\)
\(f\left(-2\right)=13\) ; \(f\left(1\right)=-2\)
\(\Rightarrow f\left(-2\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(-2;1\right)\)
\(f\left(2\right)=13\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên \(\left(1;2\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
d/ \(f\left(x\right)=5sin3x+x-10\)
\(f\left(0\right)=-10\)
\(f\left(4\pi\right)=4\pi-10\)
\(\Rightarrow f\left(0\right).f\left(4\pi\right)=-10\left(4\pi-10\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;4\pi\right)\) hay \(f\left(x\right)\) luôn có nghiệm
Đặt \(f\left(x\right)=x^3-3x+1\)
Hiển nhiên hàm đã cho là hàm đa thức nên liên tục trên R
\(f\left(-2\right)=-1\) ; \(f\left(-1\right)=3\Rightarrow f\left(-2\right).f\left(-1\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm trên \(\left(-2;-1\right)\)
\(f\left(1\right)=-1\Rightarrow f\left(-1\right).f\left(1\right)< 0\)
\(\Rightarrow f\left(x\right)\) có 1 nghiệm trên \(\left(-1;1\right)\)
\(f\left(2\right)=3\Rightarrow f\left(1\right).f\left(2\right)< 0\)
\(\Rightarrow f\left(x\right)\) có một nghiệm trên \(\left(1;2\right)\)
Vậy phương trình đã cho có 3 nghiệm pb
Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$
$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$
$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$
$\Rightarrow f(0)=-18f(\frac{1}{3})$
$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$
$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)