\(\dfrac{1}{ab+a+1}+\dfrac{1}{bc+b+1}+\dfrac{1}{abc+bc+b}=1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Ta có :

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)

\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)

\(A=\dfrac{a+ab+1}{ab+a+1}\)

\(\Rightarrow A=1\left(đpcm\right)\)

20 tháng 6 2017

kiểm tra lại đề đi bạn

12 tháng 4 2018

\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)

vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)

chúc bạn học tót ^^

12 tháng 4 2018

uhm, cảm ơn bạn nhìu nheeeeeeee :)

30 tháng 3 2018

\(s=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\) \(s=\frac{bc}{bc+abc+ab^2c}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}\)=>

\(s=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>

\(s=\frac{1+b+bc}{1+b+bc}=1\)Vậy với a.b.c=1 S=1 

30 tháng 3 2018

vao cau hoi tuong tu ma xem

AH
Akai Haruma
Giáo viên
30 tháng 3 2018

Lời giải:

Ta có:

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

\(S=\frac{c}{1.c+ac+abc}+\frac{ac}{ac+b.ac+bc.ac}+\frac{1}{1+c+ac}\)

Thay \(abc=1\) ta có:

\(S=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)

\(S=\frac{a+ac+1}{c+ac+1}=1\)

8 tháng 8 2019

*Từ abc=1 => a;b;c khác 0

Khi đó : \(\frac{1}{ab+a+1}\) = \(\frac{1}{ab+a+1}\) .\(\frac{bc}{bc}\) = \(\frac{bc}{ab.bc+abc+bc}\) = \(\frac{bc}{abc.b+abc+bc}\) = \(\frac{bc}{bc+b+1}\)

(do abc=1)

*Do abc = 1 => \(\frac{1}{abc+bc+b}\) = \(\frac{1}{bc+b+1}\)

Khi đó : \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\)

= \(\frac{bc}{bc+b+1}\) + \(\frac{b}{bc+b+1}\) +\(\frac{1}{bc+b+1}\)

= \(\frac{bc+b+1}{bc+b+1}\) = 1

Hay \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1 (đpcm).

*Chú ý : Đây là phương pháp thế số bởi chữ !

15 tháng 8 2017

CTHH có mà (=.=") https://hoc24.vn/hoi-dap/question/384421.html