Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sin\alpha=a;\cos\alpha=b\)
khi đó:
\(a+b=\frac{7}{5}\Leftrightarrow a^2+b^2+2ab=\frac{49}{25}\)
\(\Leftrightarrow1+2ab=\frac{49}{25}\Leftrightarrow2ab=\frac{24}{25}\Leftrightarrow ab=\frac{12}{25}\)
ta có
\(\left\{{}\begin{matrix}a+b=\frac{7}{5}\\ab=\frac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(\frac{7}{5}-b\right)b=\frac{12}{25}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\b^2-\frac{7}{5}b+\frac{12}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left(b-\frac{3}{5}\right)\left(b-\frac{4}{5}\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{7}{5}-b\\\left[{}\begin{matrix}b=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=\frac{3}{5}\\b=\frac{4}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\frac{4}{5}\\b=\frac{3}{5}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{a}{b}=\frac{3}{4}\\\frac{a}{b}=\frac{4}{3}\end{matrix}\right.\)\(\)
hay tan \(\alpha\approx37^o\)hoặc tan\(\alpha\approx53^o\)