Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a1 + (a2 +a3 + a4) +...+ (a11 + a12 +a13) + a14 + (a15 + a16 + a17) + (a18 + 19 +a20) <0; a1>0; a2 +a3 + a4 >0 ;...; a11 + a12 +a13 >0; a15 + a16 + a17 >0; a18 + 19 +a20 >0; a14 <0
Cũng như vậy: (a1 + a2 +a3) +...+(a10 +a11 +a12) + (a13 +a14) + (a15 +a16 +a17) + (a18 +a19 + a20) <0 =>(a13 +a14)<0
Mặt khác a12 + a13 +a14 >0 => a12>0
Từ điều kiện a1 >0; a12>0; a14<0 => a1.a14 + a14.a12 <a1.a12(đpcm)
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Tick nha
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
(a1 + a2) + (a3 + a4) + ... + (a2003 + a1) = 1002 (1)
Nhưng a1 + a2 + ... + a2003 = 0 nên từ (1) suy ra a1 = 1002
Ta lại có: a2003 + a1 = 1 => a2003 = 1-a1 = 1-1002 =-1001
a1 + a2 = 1 => a2 = 1-a1 = 1-1002 = -1001