K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Đặt \(a=\sqrt{x},b=\sqrt{y}\) thì \(a,b\ge0\)

\(P=a^2-2ab+3b^2-2a+2004,5=\left(\frac{a^2}{3}-2ab+3b^2\right)+\left(\frac{2}{3}a^2-2a+\frac{3}{2}\right)+2003\)

\(=\left(\frac{a}{\sqrt{3}}-\sqrt{3}b\right)^2+\frac{2}{3}\left(a-\frac{3}{2}\right)^2+2003\ge2003\)

Dấu "=" xảy ra khi a = 3/2 , b = 1/2

Vậy Min P = 2003 khi x = 9/4 , y = 1/4

Đặt \(a=\sqrt{x},b=\sqrt{y}\) thì \(a,b\ge0\)

\(P=a^2-2ab+3b^2-2a+2004,5=\left(\frac{a^2}{3}-2ab+3b^2\right)+\left(\frac{2}{3}a^2-2a+\frac{3}{2}\right)+2003\)

\(=\left(\frac{a}{\sqrt{3}}-\sqrt{3}b\right)^2+\frac{2}{3}\left(a-\frac{3}{2}\right)^2+2003\ge2003\)

Dấu "=" xảy ra khi a = 3/2 , b = 1/2

Vậy Min P = 2003 khi x = 9/4 , y = 1/4

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

4 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

4 tháng 6 2019

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

8 tháng 9 2019

Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau

Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)

Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)

Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai

 
 

9 tháng 9 2019

Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!

Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)

Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:

\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:

+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)

Đẳng thức xảy  ra khi ... (anh tự giải nhá:3)

+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)

Vậy...

20 tháng 5 2016

\(A=\frac{4\left(x+y+\sqrt{xy}\right)}{x+y+2\sqrt{xy}}=\frac{3\left(x+y+2\sqrt{xy}\right)+\left(x+y-2\sqrt{xy}\right)}{\left(x+y+2\sqrt{xy}\right)}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}+3\ge3\)

=> \(A\ge3\)

Vậy Min A = 3 khi x=y

19 tháng 10 2017

áp dụng bdt cauchy -schửat dạng engel ta có 

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)\(\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}=\frac{1}{2}\)

(do \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) bn tự cm nhé)

dau = xay ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa