Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2 số chẵn hơn kém nhau 4đv lầ lượt là 2n và 2n+4
ta có: (2n+4)2-(2n)2=(2n+4-2n)(2n+4+2n)=4(4n+4)=16n+16
vì 16n và 16 chia hết cho 16 nên 16n+16 sẽ chia hết cho 16.hay hiệu các bình phương của 2 số chẵn hơn kém nhau 4đv chia hết cho 16
(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16 (dpcm)
(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (dpcm)
a) Gọi số chẵn là \(2k\)và \(2k+4\)
\(\Rightarrow\left(2k+4\right)^2-\left(2k\right)^2\)
\(\Rightarrow16\left(k+1\right)\)chia hết cho 16
b) Gọi 2 số lẻ là\(2k+7\)và \(2k+1\)
\(\Rightarrow\left(2k+7\right)^2-\left(2k+1\right)^2\)
\(\Rightarrow24\left(k+2\right)\)chia hết cho 24
thưa các cô các a các bà các chú
Nguyễn Ngọc Minh Khánh coppy mong ad sử lý aaaaa!!!!
Tham khảo nhé bạn:
https://olm.vn/hoi-dap/detail/7431752799.html
~Std well~
#Mina
Gọi số lẻ thứ nhất là 2k - 1 .
Gọi số lẻ thứ 2 là 2k + 1 .
Ta có :
\(\left(2k-1\right)^2-\left(2k+1\right)^2\)
\(=\left(2k-1+2k+1\right)\left(2k-1-2k-1\right)\)
\(=4k.\left(-2\right)=-8k⋮8\)
Vậy ............................
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
(2k+7)2-(2k+1)2=4k2=28k+49-4k2-4k-1=24k+48=24k(k+2)(2k+7)2(2k+1)2=4k2+28k+49-4k2-4k-1=24k+48=24(k+2)chia hết cho 24 ( đpcm)