K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

(2k+7)2-(2k+1)2=4k2=28k+49-4k2-4k-1=24k+48=24k(k+2)(2k+7)2(2k+1)2=4k2+28k+49-4k2-4k-1=24k+48=24(k+2)chia hết cho 24 ( đpcm)

20 tháng 7 2016

gọi 2 số chẵn hơn kém nhau 4đv lầ lượt là 2n và 2n+4

ta có: (2n+4)2-(2n)2=(2n+4-2n)(2n+4+2n)=4(4n+4)=16n+16

vì 16n và 16 chia hết cho 16 nên 16n+16 sẽ chia hết cho 16.hay hiệu các bình phương của 2 số chẵn hơn kém nhau 4đv chia hết cho 16

15 tháng 7 2016

(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16 (dpcm)

(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (dpcm)

15 tháng 7 2016

(a)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1)(2k+4)2−(2k)2=4k2+16k+16−4k2=16k+16=16(k+1) chia hết cho 16
 (đpcm)
(b)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2)(2k+7)2−(2k+1)2=4k2+28k+49−4k2−4k−1=24k+48=24(k+2) chia hết cho 24 (đpcm)

a) Gọi số chẵn là \(2k\)và \(2k+4\)

\(\Rightarrow\left(2k+4\right)^2-\left(2k\right)^2\)

\(\Rightarrow16\left(k+1\right)\)chia hết cho 16

b) Gọi 2 số lẻ là\(2k+7\)và \(2k+1\)

\(\Rightarrow\left(2k+7\right)^2-\left(2k+1\right)^2\)

\(\Rightarrow24\left(k+2\right)\)chia hết cho 24

8 tháng 7 2019

thưa các cô các a các bà các chú 

Nguyễn Ngọc Minh Khánh coppy mong ad sử lý aaaaa!!!!

15 tháng 10 2019

Tham khảo nhé bạn:

https://olm.vn/hoi-dap/detail/7431752799.html

~Std well~

#Mina

15 tháng 10 2019

Gọi số lẻ thứ nhất là 2k - 1 .

Gọi số lẻ thứ 2 là 2k + 1 . 

Ta có :

 \(\left(2k-1\right)^2-\left(2k+1\right)^2\)

\(=\left(2k-1+2k+1\right)\left(2k-1-2k-1\right)\)

\(=4k.\left(-2\right)=-8k⋮8\)

Vậy ............................

25 tháng 6 2015

Gọi 2k+1 va 2p+1 la các số lẻ 
hieu cac binh phuong cua 2 so le la`: 
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p) 
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p... 
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8 
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

25 tháng 6 2015

sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8

25 tháng 6 2015

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

25 tháng 6 2015

Giả

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3

Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8

Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8.

19 tháng 7 2015

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

19 tháng 7 2015

de thi lam di 

noi vay toi cung noi duoc