K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

1 tháng 6 2021

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b

6 tháng 4 2018

Đề đúng bn ak !

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

10 tháng 5 2018

Ta có: \(a^2+b^2=a+b\Leftrightarrow4a^2+4b^2=4a+4b\)

\(\Leftrightarrow4a^2-4a+4b^2-4b=0\Leftrightarrow\left(4a^2-4a+1\right)+\left(4b^2-4a+1\right)=2\)

\(\Leftrightarrow\left(2a-1\right)^2+\left(2b-1\right)^2=2\)

Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\left(2a-1\right)^2+\left(2b-1\right)^2\ge\frac{\left(2a+2b-2\right)}{2}\)

\(\Rightarrow2\ge\frac{\left(2a+2b-2\right)^2}{2}\Leftrightarrow4\ge\left(2a+2b-2\right)^2\)

\(\Leftrightarrow1\ge a+b-1\Leftrightarrow4\ge a+b+2\)

Nhận thấy: \(S=\frac{a}{a+1}+\frac{b}{b+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)\)

\(=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\Rightarrow2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\)

Do \(a+b+2\le4\)(cmt) \(\Rightarrow\frac{4}{a+b+2}\ge1\Rightarrow2-\frac{4}{a+b+2}\le1\)

Từ đó: \(S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\le1\)

Suy ra \(Max\) \(S=1\).

Dấu "=" xảy ra khi \(a=b=1.\)

16 tháng 1 2020

Cách 3: (rất gọn gàng)

Giả sử \(c=min\left\{a,b,c\right\}\).Trước hết chứng minh: \(4P\le\left(a+b+c\right)^3-3abc\)

Có: \(VP-VT=c\left(\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)+\left(a-b\right)^2\left(a+b-2c\right)\ge0\)

Vì vậy: \(4P\le\left(a+b+c\right)^3-3abc\le\left(a+b+c\right)^3=1\Rightarrow P\le\frac{1}{4}\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(\frac{1}{2};\frac{1}{2};0\right)\) và các hoán vị.

23 tháng 8 2019

P/s: Làm thử, ko chắc, em cũng chưa kiểm tra lại lời giải đâu.

Từ đề bài có \(P=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=f\left(a;b;c\right)\)

Xét hiệu:

\(f\left(a;b;c\right)-f\left(t;t;c\right)=ab\left(a+b\right)-t^2.\left(2t\right)+bc\left(b+c\right)+ca\left(c+a\right)-2tc\left(t+c\right)\) với \(t=\frac{a+b}{2}\)  

Lại có \(b\left(b+c\right)+a\left(c+a\right)-2t\left(t+c\right)\)

\(=b^2+bc+a^2+ca-\left(a+b\right)\left(\frac{a+b}{2}+c\right)\)

\(=\frac{\left(a-b\right)^2}{2}\) nên :

\(f\left(a;b;c\right)-f\left(t;t;c\right)=\frac{c\left(a-b\right)^2}{2}-\left(t^2-ab\right)\left(a+b\right)\)

\(=\frac{2c\left(a-b\right)^2}{4}-\frac{\left(a+b\right)\left(a-b\right)^2}{4}\)

\(=\frac{\left(a-b\right)^2}{4}\left(c-a+c-b\right)\). Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Có ngay \(f\left(a;b;c\right)-f\left(t;t;c\right)\le0\) hay \(f\left(a;b;c\right)\le f\left(t;t;c\right)\).

Do đó ta sẽ tìm max của f(t;t;c) = \(2t^3+2tc\left(t+c\right)\). Mặt khác từ đề bài suy ra \(c=1-2t\) mà c> 0 và t > 0do đó \(0\le t\le\frac{1}{2}\)

Do đo \(f\left(t;t;c\right)=2t^3+2t\left(1-2t\right)\left(1-t\right)=6t^3-6t^2+2t\)

Bây giờ xét hiệu \(f\left(t;t;c\right)-\frac{1}{4}=\left(t-\frac{1}{2}\right)\left(6t^2-3t+\frac{1}{2}\right)\le0\forall\)\(0\le t\le\frac{1}{2}\)

Do đó \(f\left(t;t;c\right)\le\frac{1}{4}\).Đẳng thức xảy ra khi \(t=\frac{1}{2}\Rightarrow a=b=\frac{1}{2}\Rightarrow c=0\)

Vậy....

P/s: Em ko chắc vì hoàn toàn chưa kiểm tra lại.

15 tháng 11 2017

Ta có:

\(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Rightarrow M\le\sqrt{2}-1\)

15 tháng 11 2017

Ta có :

   \(2M=\frac{2ab}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}\)

\(\Leftrightarrow a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Leftrightarrow M\le\sqrt{2}-1\)