\(x\ge2y\) tim gia tri nho nhat cua phuong trinh 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

CHị phương em mới học lớp 7

12 tháng 5 2016

vì x>= 2y

=> P=\(\frac{2\cdot x^2+y^2-2\cdot x\cdot y}{xy}>=\frac{2\cdot\left(2y\right)^2+y^2-2\cdot\left(2y\right)\cdot y}{2y\cdot y}\)=\(\frac{8\cdot y^2+y^2-4y^2}{2y^2}=\frac{5y^2}{2y^2}=\frac{5}{2}\)

Vậy min P=5/2

Dấu = khi x=2y

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

16 tháng 2 2017

x>y=>x-y>0

Có (x2+y2)/(x-y)=(x2-2xy+y2+2xy)/(x-y)=[(x-y)2+2000]/(x-y)=x-y + 2000/x-y 

đến đây áp dụng cauchy là xong

24 tháng 7 2015

em mới lớp 1 àk

 

25 tháng 10 2015

Huỳnh Đăng Trình điu vừa thui

tim cac so nguyen a;b;c sao cho:         a^2+b^2+c^2+4<hoac= ab+3b+2c         2.          giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)         3.      tim gia tri nho nhat cua:   \(\frac{x+8}{\sqrt{x}+1}\)              4.   tim gia tri nho nhat cua:     \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)            5.    cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ;  0<a;b;c<1   c/m    a^2+b^2+c^2+2abc<2     ...
Đọc tiếp
  1. tim cac so nguyen a;b;c sao cho:         a^2+b^2+c^2+4<hoac= ab+3b+2c

         2.          giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)

         3.      tim gia tri nho nhat cua:   \(\frac{x+8}{\sqrt{x}+1}\)    

          4.   tim gia tri nho nhat cua:     \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\) 

           5.    cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ;  0<a;b;c<1   c/m    a^2+b^2+c^2+2abc<2

          6.     giai he phuong trinh     6(x+y)=5xy   ;    12(y+z)=7zy   ;     4(z+x)=3xz

          7.    cho a; b;c la 3 canh cua 1 tam giac c/m voi moi x,y,z     \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)

       8.   cho x;y;z>0 thoa man x+y+z=2008 c/m    \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}>hoac=2008\)

 

1
12 tháng 6 2015

2)đk: x>=0 \(\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\left(\sqrt{x}+1\right)\right)}{\sqrt{x}+1}+\frac{9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)

\(x\ge0\Leftrightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\frac{9}{\sqrt{x}+1}>0\). áp dụng bđt cosi cho 2 số dương \(\sqrt{x}+1;\frac{9}{\sqrt{x}+1}\) ta có:

\(\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\ge2\sqrt{9}=6\Leftrightarrow\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge6-2=4\)=> Min =4 <=> x=4.

nhớ l i k e

20 tháng 11 2018

theo bđt cauchy schwars dạng engel ta có

\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)

Dấu '=' xảy ra khi x=y=z

pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)

\(\Leftrightarrow3\sqrt{2}x=2015\)

\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)

vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)

ko chắc đúng nha bạn :))