Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(-1\le x,y,z\le1\)
Ta có: \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}=\frac{x^2-y^2}{2}+\frac{1}{2}\) (bđt cosi)
CMTT: \(y\sqrt{1-z^2}\le\frac{y^2-z^2}{2}+\frac{1}{2}\)
\(z\sqrt{1-x^2}\le\frac{z^2-x^2}{2}+\frac{1}{2}\)
=> VT = \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2-y^2}{2}+\frac{y^2-z^2}{2}+\frac{z^2-x^2}{2}+\frac{3}{2}=\frac{3}{2}\)
VP = 3/2
=> VT = VP <=> \(\hept{\begin{cases}x^2=1-y^2\\y^2=1-z^2\\z^2=1-x^2\end{cases}}\) <=> \(x^2+y^2+z^2=1-y^2+1-z^2+1-x ^2\)
<=> \(2x^2+2y^2+2z^2=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)
ÁP dụng BĐT AM-GM: \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1}{2}\left(2+x^2\right)\)
thiết lập tương tự và cộng theo vế :\(P\ge\frac{1}{\frac{1}{2}\left(2+x^2\right)}+\frac{1}{\frac{1}{2}\left(2+y^2\right)}=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\)
Áp dụng BĐT cauchy-schwarz:(bunyakovsky dạng phân thức)
\(VT=2\left(\frac{1}{x^2+2}+\frac{1}{y^2+2}\right)\ge\frac{8}{x^2+y^2+4}=\frac{8}{12}=\frac{2}{3}\)
Dấu ''=''xảy ra khi x=y=2
\(\frac{a}{\sqrt{b+c-a}}=\frac{a^2}{\sqrt{a}\sqrt{a}\sqrt{b+c-a}}>\frac{a^2}{\sqrt{\frac{\left(b+c-a+2a\right)^3}{27}}}=\frac{a^2}{\sqrt{\left(a+b+c\right)^3}}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
1) \(x^2+y=y^2+x\Leftrightarrow x^2-y^2-\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=x\\y=1-x\end{cases}}\). Vì x,y là hai số khác nhau nên ta loại trường hợp x = y. Vậy ta có y = x-1.
\(P=\frac{x^2+\left(1-x\right)^2+x\left(1-x\right)}{x\left(1-x\right)-1}=\frac{x^2+x^2-2x+1-x^2+x}{-x^2+x-1}\)
\(=\frac{x^2-x+1}{-\left(x^2-x+1\right)}=-1\)
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0