K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2015

\(\frac{a}{5}=\frac{b}{6}=>\frac{a^2}{25}=\frac{b^2}{36}=>\frac{2a^2}{50}=\frac{b^2}{36}\)

áp dụng ... ta có:

\(\frac{2a^2}{50}=\frac{b^2}{36}=\frac{2a^2-b^2}{50-36}=\frac{56}{14}=4\)

=>a^2/25=4=>a^2=100=>a=10

=>b^2/36=4=>b^2=144=>b=12

=>a+b=10+12=22

26 tháng 10 2015

\(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{a^2}{25}=\frac{b^2}{36}=\frac{2a^2-b^2}{50-36}=\frac{56}{14}=4\)

\(\Rightarrow\) a2 = 100; b2 = 144

\(\Rightarrow\) a = 10; b = 12 (vì a,b > 0)

\(\Rightarrow\) a + b = 10 + 12 = 22

5 tháng 10 2016

Mình ko biết vì chưa học!!!

Cũng là bạn bè thì chỉ có thể nói:

Chúc cậu may mắn trong khi giải bài toán này!!!

Có ai giúp cậu ấy nha!!!

6 tháng 10 2019

Ta có: 

\(a^2+b^2+4=2ab+4a+4b\)

\(\Rightarrow a^2+b^2+4-2ab-4b+4a=8a\)

\(\Rightarrow\left(a-b+2\right)^2=8a\)

\(\Rightarrow\frac{a}{2}=\frac{\left(a-b+2\right)^2}{16}=\left(\frac{a-b+2}{4}\right)^2\)

=> \(\frac{a}{2}\)là số chính phương.

6 tháng 10 2019

Sao lại bằng 8a chỗ đấy ạ. Bạn giải thích hộ mình với

12 tháng 2 2016

\(a^{2006}+b^{2006}=a^{2004}+b^{2004}\)

\(\Rightarrow a^{2004}.\left(a^2-1\right)=b^{2004}.\left(1-b^2\right)\)

Vì a là số dương \(\Rightarrow a^2-1\ge0\)

\(\Rightarrow a^{2004}.\left(a^2-1\right)\ge0\)

\(\Rightarrow b^{2004}.\left(1-b^2\right)\ge0\)

\(\Rightarrow b^2\le1\)

Ta lại có:

\(a^{2004}+b^{2004}=a^{2006}+b^{2006}\)

\(a^{2004}.\left(1-a^2\right)=b^{2004}.\left(b^2-1\right)\)

b là số nguyên dương \(\Rightarrow b^2-1\ge0\)

\(\Rightarrow b^{2004}.\left(b^2-1\right)\ge0\)

\(\Rightarrow a^{2004}.\left(1-a^2\right)\ge0\)

\(\Rightarrow a^2\le1\)

\(\Rightarrow a^2+b^2\le1+1=2\)

\(\Rightarrow\frac{a^2+b^2}{32}\le\frac{2}{32}=2^{-4}\)

 

bất đẳng thức là cái j??