K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

cho a;b thuộc Nnha các bạn

6 tháng 2 2019

Bổ sung đề:\(a,b,c\inℕ^∗\)

Ta có:\(a^{102}+b^{102}=\left(a^{101}+b^{101}\right)\left(a+b\right)-ab\left(a^{100}+b^{100}\right)\left(1\right)\)với \(\forall a,b\)

Mà \(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)suy ra:\(a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\Rightarrow1+b^{100}=1+b^{101}=1+b^{102}\Rightarrow b^{100}=b^{101}=b^{102}\Rightarrow b=1\\b=1\Rightarrow a=1\end{cases}}\)

\(\Rightarrow a=1;b=1\)

\(\Rightarrow P=1^{2010}+1^{2010}=2\)

Vậy \(=2\)

8 tháng 9 2017

Ta có : a102 + b102 = (a101 + b101)(a + b) - ab(a100 + b100)

Mà a100 + b100 = a101 + b101 = a102 + b102

Do đó : a + b - ab = 1

=> a + b - ab - 1 = 0

<=> (a - ab) + (b - 1) = 0

<=> a(1 - b) - (1 - b) = 0

=> (a - 1)(1 - b) = 0

\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Nên a = 1 thì b = 1 

Vậy  P = a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2

8 tháng 9 2017

I have a crazy idea tham khảo nhé:

Vì: a100 + b100; a101 + b101; a102 + b102 đều = nhau nên a chỉ = 1 => a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2

Vậy:

1 tháng 4 2016

so sánh bằng cách tìm số trung gian nha

1 tháng 4 2016

B=(10101+1):(10102+1)<(10101+1+9):(10102 +1+9)=(10101+10):(10102+10)=[10.(10100+1]:[10.(10101+)]

  =(10100+1):(10101+1)=A

=>A>B

a: \(a=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{101}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{101}\right)⋮3\)

b: \(a=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{100}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{100}\right)⋮7\)

10 tháng 2 2019

\(A=3^2-3^5+3^8-3^{11}+...-3^{101}\)

\(\Rightarrow3A=3^5-3^8+3^{11}-3^{14}+...-3^{104}\)

\(\Rightarrow3A+A=\left(3^5-3^8+3^{11}-3^{14}+...-3^{104}\right)+\left(3^2-3^5+3^8-3^{11}+...-3^{101}\right)\)

\(\Rightarrow4A=-3^{104}+3^2\)

\(\Rightarrow28A=7\left(3^2-3^{104}\right)\)

\(\Rightarrow B+28A=3^{104}+7\left(3^2-3^{104}\right)\)

\(\Rightarrow B+28A=7.3^2-6.3^{104}=3^2\left(7-2.3^{103}\right)\)

7 tháng 2 2017

Có, vì A có 2100+2101+2102 nên nó là số chính phương