\(ax^2+bx+c=0\)          (1)

               \(cx^2+b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

Vì x1 là nghiệm của pt => \(ax1^2+bx1+c=0\)

Do x1 > 0 . chia cả hai vế cho x1^2 ta đc pt:

\(a+b\cdot\left(\frac{1}{x1}\right)+c\left(\frac{1}{x1}\right)^2=0\) => \(\frac{1}{x1}\) là nghiệm của pt (2)

=> \(x3=\frac{1}{x1}\) (1)

CMTT x4 = 1/x2 (2)

Vì pt (1) có 2 n* nguyên dương x1 ; x2 => pt (2) cũng có hai nghiệm nguyên dương x3 ; x4 

Xét \(x1+x2+x3+x4=x1+x2+\frac{1}{x1}+\frac{1}{x2}=\left(x1+\frac{1}{x1}\right)+\left(x2+\frac{1}{x2}\right)\ge4\) ( BĐT cô si )

 

 

30 tháng 1 2016

(1) (2) có delta như nhau.

\(x_1.x_2.x_3.x_4=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{\left(4ac\right)^2}{16a^2c^2}=1\)

Cô si 4 số dương => KL...

 

29 tháng 1 2016

CÁI BÀI NÀY CÂU HỎI LÀ LÀM GÌ VẬY ĐỌC KO HỈU LẮM

29 tháng 1 2016

phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi

30 tháng 1 2016

+b2 - 4ac > 0

+x1 - x2 = 5 

+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6

=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1

+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6

+ x1 =6 ; x2 = 1 => a =-7 ; b = 6

30 tháng 1 2016

sai đề bài rùi kìa phải là ax mà

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

26 tháng 1 2016

Theo ht Viete ta có :

\(\int^{x1+x2=-\frac{b}{a}}_{x1x2=\frac{c}{a}}\)

Xét \(\frac{1}{x1^2}+\frac{1}{x2^2}=\frac{x1^2+x2^2}{x1^2x2^2}=\frac{\left(x1+x2\right)^2-2x1x2}{x1^2\cdot x2^2}=\frac{\left(\frac{-b}{a}\right)^2-\frac{2c}{a}}{\left(\frac{c}{a}\right)^2}\)  rút gọn tiếp nha  (1)

\(\frac{1}{x1^2}\cdot\frac{1}{x2^2}=\frac{1}{\left(x1x2\right)^2}=\frac{1}{\left(\frac{c}{a}\right)^2}=\frac{a^2}{c^2}\)  (2)

Từ (1) và (2) => \(\frac{1}{x1^2};\frac{1}{x2^2}\) là nghiệm pt ....

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

4 tháng 8 2015

\(\Leftrightarrow\left(x-1\right)\left[x^2+\left(3m+1\right)x+3m+3\right]=0\)

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

NV
30 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)