Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm thỏa mãn pt
\(\left(k-\frac{2}{3}\right)x+1=\left(2-k\right)x-3\)
\(\Leftrightarrow kx-\frac{2}{3}x+1=2x-xk-3\Leftrightarrow2xk-\frac{8}{3}x+4=0\)
Thay x = 4 vào pt trên ta được :
\(8k-\frac{32}{3}+4=0\Leftrightarrow k=\frac{5}{6}\)
Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)
Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)
Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)
a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:
\(k=-k+4\Rightarrow x=2\)
b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:
\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)
vẽ đồ thị hàm số y=/x/+4x . Với giá trị nào của k thì hàm số y=k cắt đồ thị hàm số trên tại hai điểm phân biệt
Từ giả thiết ta gọi tọa độ điểm cắt nhau A(a;0)
Thay vào 2 hàm số ta có hệ:
\(\left\{{}\begin{matrix}12a+5-m=0\\3a+3+m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15a+8=0\\m=-3a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{8}{15}\\m=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy \(m=-\dfrac{7}{5}\)
ây em nhầm trên trục hoành,giải lại:
Từ giả thiết ta gọi tọa độ điểm cắt nhau A(0;a)
Thay vào 2 hàm số ta có:
y=5-m và y=3+m
=>5-m=3+m
<=> 2m =2
<=>m=1
Vậy m=1
Các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) đều là hàm số bậc nhất đối với x vì hệ số của x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại một điểm trên trục tung, chỉ khi tung độ góc của chúng bằng nhau: 3 + m = 5 – m => m = 1.
Vậy khi m = 1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
Các hàm số y = 2x + (3 +m) và y = 3x + (5-m) đều là hàm số bật nhất đối với x và hệ số x đều khác 0. Đồ thị của chúng là các đường thẳng cắt trục tung tại một điểm có tung độ là b. Do đó hai đường thẳng cắt nhau tại cùng một điểm trên trục tung, khi và chỉ khi tung độ gốc của chúng bằng nhau, nghĩa là:
3 + m = 5 – m ⇔ m = 1
Vậy khi m =1 thì hai đường thẳng đã cho cắt nhau tại một điểm trên trục tung.
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Gọi A và B lần lượt là giao điểm của \(d_1\) và \(d_2\) với trục tung
\(\Rightarrow\left\{{}\begin{matrix}A\left(0;2\right)\\B\left(0;k-3\right)\end{matrix}\right.\)
Đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung khi và chỉ khi A trùng B
\(\Leftrightarrow2=k-3\)
\(\Leftrightarrow k=5\)