Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Hai đường thẳng // khi
\(\hept{\begin{cases}m^2-1=3\\m\ne2\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\left(l\right)\\m=-2\end{cases}}\)
b/ Hai đường thẳng cắt nhau khi
\(m^2-1\ne3\Leftrightarrow\orbr{\begin{cases}m\ne2\\m\ne-2\end{cases}}\)
c/ Hai đường thẳng trùng nhau khi
\(\hept{\begin{cases}m^2-1=3\\m=2\end{cases}}\Leftrightarrow m=2\)
d/ Hai đường thẳng vuông góc khi
(m2 - 1).3 = 1
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{2}{\sqrt{3}}\\m=\frac{-2}{\sqrt{3}}\end{cases}}\)
Câu a : \(\left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}4m+8=3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
Câu b : \(\left(d_1\right)//4x-3\Leftrightarrow4m+8=4\Leftrightarrow m=-1\)
Câu c : \(\left(d_2\right)\perp4x-3\Leftrightarrow\left(3-m\right).4=-1\Leftrightarrow m=\dfrac{13}{4}\)
Câu d : \(\left(d_1\right)c\left(d_2\right)tạiOy\Leftrightarrow\left\{{}\begin{matrix}4m+8\ne3-m\\2n+3=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\n=-\dfrac{9}{2}\end{matrix}\right.\)
Điều kiện để (d1) và (d2) trùng nhau là
\(\begin{cases}m=2m-3\left(1\right)\\-2m-4=m^2-1\left(2\right)\end{cases}\)
Giải (1) được m = -3
Giải (2) được \(m^2+2m+3=0\) vô nghiệm.
Vậy ........................................
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2
Câu 1:
Câu 2:
Do d cắt \(Ox\) tại \(A\Rightarrow A\left(2;0\right)\)
Do d cắt \(Oy\) tại \(B\Rightarrow B\left(0;2\right)\)
\(\Rightarrow OA=\sqrt{\left(0-2\right)^2+\left(0-0\right)^2}=2\\ OB=\sqrt{\left(0-0\right)^2+\left(0-2\right)^2}=2\\ \Rightarrow S_{AOB}=\dfrac{OA\cdot OB}{2}=\dfrac{2\cdot2}{2}=2\)
a) Giao điểm \(d_1;d_2\) có tọa độ \(x_o;y_0\)
\(Ta\text{ }có:2x_0+4=-2x_0+4\\ \Leftrightarrow4x_0=0\\ \Leftrightarrow x_0=0\\ \Leftrightarrow y_0=2\cdot0+4=4\)
Tọa độ của giao điểm \(d_1;d_2\) là \(0;4\)
b)
\(\left(d_1\right)\text{//}\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne\pm3\end{matrix}\right.\Leftrightarrow m=1\\ \left(d_1\right)\cap\left(d_2\right)\text{ tại 1 điểm trên Oy}\\ \Leftrightarrow\left\{{}\begin{matrix}y=\left(m-3\right)\cdot0+m^2-6\\y=-2m\cdot0+3=3\end{matrix}\right.\Leftrightarrow m^2-6=3\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\\ \left(d_1\right)\equiv\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}m-3=-2m\\m^2-6=3\end{matrix}\right.\Leftrightarrow m\in\varnothing\)