K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

* y= (k-3)x-3k+3 (d1)

a= k-3 ; b= -3k+3

* y=(2k+1)x+k+5 (d2)

a'= 2k+1 ; b' k+5

a, Để hai đường thẳng cắt nhau thì :

\(a\ne a'< =>k-3\ne2k+1\)

\(< =>k-2k\ne1+3\)

\(< =>-k\ne4\)

<=>\(k\ne-4\)

Vậy \(k\ne-4\) thì hai đường thẳng cắt nhau

b, Để hai đường thẳng cắt nhau tại điểm trên trục tung thì :

\(\begin{cases}a\ne a'\\b=b'\end{cases}\Leftrightarrow\begin{cases}k-3\ne2k+1\\-3k+3=k+5\end{cases}}\)\(\Leftrightarrow\begin{cases}k-2k\ne1+3\\-3k-k=5-3\end{cases}\Leftrightarrow\begin{cases}k\ne-4\\k=-\frac{1}{2}\left(TMĐK:k\ne-4\right)\end{cases}}\)Vậy \(k=-\frac{1}{2}\) thì hai đường thẳng cắt nhau tại điểm trên trục tung

18 tháng 10 2015

Áp dụng BĐT Cô si với hai số không âm 

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge2\sqrt{\frac{1}{\sqrt{x}\sqrt{y}}}\Leftrightarrow6\ge2\sqrt{\frac{1}{\sqrt{xy}}}\Leftrightarrow\frac{1}{\sqrt{xy}}\le9\)

Vậy MAx A = 9  khi x = y=1/9  

1 tháng 2 2022

1) Xét (O):

MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).

\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)

hay \(\widehat{MAI}=90^o.\)

Xét tứ giác AMEI:

\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.

2) Ta có: 

I là trung điểm của OA (gt).

\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)

Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)

\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)

Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)

\(\Rightarrow IB=3IA.\)

Xét (O):

\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).

\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).

\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)

hay \(\widehat{EBN}=\widehat{EAI}.\)

Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)

\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)

Xét (O):

AB là đường kính (gt).

\(E\in\left(O\right)\left(gt\right).\)

\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).

\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)

Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)

Xét \(\Delta AEI\) và \(\Delta BEN:\)

\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)

\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)

\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)

\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)

24 tháng 11 2019

Bạn ghi thiếu đề ở \(d_2\) đó

Bạn xem lại đề đi

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)

20 tháng 12 2017

a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'

23 tháng 8 2021

\(\left(d_1\right):y=-x+1\)

\(\left(d_2\right):y=x-1\)

\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)

a) Để (d1) và (d3) vuông góc với nhau:

\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)

Vậy k=0

b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)

Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)

\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)

Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm

c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua

Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k

\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)

Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.