Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* y= (k-3)x-3k+3 (d1)
a= k-3 ; b= -3k+3
* y=(2k+1)x+k+5 (d2)
a'= 2k+1 ; b' k+5
a, Để hai đường thẳng cắt nhau thì :
\(a\ne a'< =>k-3\ne2k+1\)
\(< =>k-2k\ne1+3\)
\(< =>-k\ne4\)
<=>\(k\ne-4\)
Vậy \(k\ne-4\) thì hai đường thẳng cắt nhau
b, Để hai đường thẳng cắt nhau tại điểm trên trục tung thì :
\(\begin{cases}a\ne a'\\b=b'\end{cases}\Leftrightarrow\begin{cases}k-3\ne2k+1\\-3k+3=k+5\end{cases}}\)\(\Leftrightarrow\begin{cases}k-2k\ne1+3\\-3k-k=5-3\end{cases}\Leftrightarrow\begin{cases}k\ne-4\\k=-\frac{1}{2}\left(TMĐK:k\ne-4\right)\end{cases}}\)Vậy \(k=-\frac{1}{2}\) thì hai đường thẳng cắt nhau tại điểm trên trục tung
Áp dụng BĐT Cô si với hai số không âm
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge2\sqrt{\frac{1}{\sqrt{x}\sqrt{y}}}\Leftrightarrow6\ge2\sqrt{\frac{1}{\sqrt{xy}}}\Leftrightarrow\frac{1}{\sqrt{xy}}\le9\)
Vậy MAx A = 9 khi x = y=1/9
1) Xét (O):
MA là tiếp tuyến (\(d_1\) là tiếp tuyến; \(M,A\in d_1\)).
\(\Rightarrow MA\perp AB.\Rightarrow\widehat{MAB}=90^o.\)
hay \(\widehat{MAI}=90^o.\)
Xét tứ giác AMEI:
\(\widehat{MAI}+\widehat{MEI}=90^o+90^o=180^o.\)
Mà 2 góc này ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác AMEI nội tiếp đường tròn.
2) Ta có:
I là trung điểm của OA (gt).
\(\Rightarrow IA=\dfrac{1}{2}OA=\dfrac{1}{2}R.\)
Mà \(R=\dfrac{1}{2}AB\left(AB=2R\right).\)
\(\Rightarrow IA=\dfrac{1}{2}.\dfrac{1}{2}AB=\dfrac{1}{4}AB.\)
Mà \(IB=AB-\dfrac{1}{4}AB=\dfrac{3}{4}AB.\)
\(\Rightarrow IB=3IA.\)
Xét (O):
\(\widehat{EBN}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc tạo bởi tiếp tuyến và dây).
\(\widehat{EAB}=\dfrac{1}{2}sđ\stackrel\frown{EB}\) (Góc nội tiếp).
\(\Rightarrow\widehat{EBN}=\widehat{EAB}.\)
hay \(\widehat{EBN}=\widehat{EAI}.\)
Ta có: \(EI\perp EN\left(gt\right).\Rightarrow\widehat{IEN}=90^o.\)
\(\Rightarrow\widehat{IEB}+\widehat{BEN}=90^o.\) (1)
Xét (O):
AB là đường kính (gt).
\(E\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{AEB}=90^o\) (Góc nội tiếp chắn nửa đường tròn).
\(\Rightarrow\widehat{AEI}+\widehat{IEB}=90^o.\) (2)
Tứ (1) và (2) \(\Rightarrow\widehat{AEI}=\widehat{BEN}.\)
Xét \(\Delta AEI\) và \(\Delta BEN:\)
\(\widehat{AEI}=\widehat{BEN}\left(cmt\right).\)
\(\widehat{EAI}=\widehat{EBN}\left(cmt\right).\)
\(\Rightarrow\Delta AEI\sim\Delta BEN\left(g-g\right).\)
\(\Rightarrow\dfrac{EI}{EN}=\dfrac{AI}{BN}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow EI.BN=AI.EN.\\ \Rightarrow3EI.BN=3AI.EN.\\ \Rightarrow3EI.BN=IB.EN.\)
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}k-2=1\\k+2\ne-1\end{matrix}\right.\Leftrightarrow k=3\)
a, cắt : a khác a'
b, b= b'; a khác a'
c, a=a' ; b khác b'
d, a*a'= -1
e, a= a' ;b= b'
\(\left(d_1\right):y=-x+1\)
\(\left(d_2\right):y=x-1\)
\(\left(d_3\right):y=\dfrac{k+1}{1-k}x+\dfrac{k+1}{k-1}\)
a) Để (d1) và (d3) vuông góc với nhau:
\(\Leftrightarrow\left(-1\right)\left(\dfrac{k+1}{1-k}\right)=-1\)\(\Leftrightarrow k=0\)(thỏa)
Vậy k=0
b)Giao điểm của (d1) và (d2) là nghiệm của hệ \(\left\{{}\begin{matrix}y=-x+1\\y=x-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)
Để (d1);(d2);(d3) đồng quy\(\Leftrightarrow\) (d3) đi qua điểm (1;0)
\(\Rightarrow0=\dfrac{k+1}{1-k}.1+\dfrac{k+1}{k-1}\)\(\Leftrightarrow0=0\)(lđ)
Vậy với mọi k thì (d1);d2);(d3) luôn cắt nhau tại một điểm
c)Gỉa sử \(M\left(x_0;y_0\right)\) là điểm cố định mà (d3) luôn đi qua
Khi đó \(\left(k+1\right)x_0+\left(k-1\right)y_0=k+1\) luôn đúng với mọi k
\(\Leftrightarrow k\left(x_0+y_0-1\right)+x_0-y_0-1=0\) luôn đúng với mọi k
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\x_0-y_0-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=1\end{matrix}\right.\)
Vậy \(M\left(2;1\right)\) là điểm cố định mà (d3) luôn đi qua.