\(\dfrac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Để hai đường song song thì m-2=-3

hay m=-1

13 tháng 11 2017

a)

g(x) = 2x - 3 g(x) = 2x - 3 f: 0.5x + y = 2 f: 0.5x + y = 2 TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan1 = “y=-\dfrac{1}{2}x+2” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3” TenVanBan2 = “y=2x-3”

b) Do (D3) // (D1) nên \(a=-\frac{1}{2}\)

Vậy thì phương trình của (D3) là \(y=-\frac{1}{2}x+b\)

Do (D3) qua điểm (2;-2) nên \(-\frac{1}{2}.2+b=-2\Rightarrow b=-1\)

Vậy (D3)  : \(y=-\frac{1}{2}x-1\)

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0
26 tháng 11 2022

b: Tọa độ giao là:

-1/2x+5=1/3x+1 và y=1/3x+1

=>-5/6x=-4 và y=1/3x+1

=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5

c: Vì (d3)//(d1) nên (d3): y=-1/2x+b

Thay y=2 vào (d2), ta được:

x/3+1=2

=>x=3

Thay x=3 và y=2 vào y=-1/2x+b, ta được:

b-3/2=2

=>b=7/2

d: Thay x=24/5 và y=13/5 vào (d4), ta được:

24/5(m-3)+m+1=13/5

=>24/5m-72/5+m+1=13/5

=>29/5m-67/5=13/5

=>29/5m=80/5

=>m=80/5:29/5=80/5*5/29=80/29