Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ sau:
M P Q N I A R
a/ Xét ΔAMQ và ΔANP có:
AM = AN (gt)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
AQ = AP (gt)
=> ΔAMQ = ΔANP (c.g.c) (đpcm)
b/ Vì ΔAMQ = ANP (ý a)
=> \(\widehat{QMA}=\widehat{PNA}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> MQ // PN (đpcm)
c/+) Xét ΔAMI và ΔANR có:
\(\widehat{MAI}=\widehat{NAR}\) (đối đỉnh)
AM = AN(gt)
\(\widehat{AMI}=\widehat{RNA}\) (so le trong do MQ // PN (ý b))
=> ΔAMI = ΔANR (g.c.g)
=> MI = NR (1)
+) CM tương tự ta có:
ΔAQI = ΔAPR (g.c.g)
=> QI = PR (2)
Từ (1); (2) và I là trung điểm của MQ
=> RP = RN (đpcm)
b: Xét tứ giác MPNQ có
O là trung điểm của MN
O là trung điểm của PQ
Do đó: MPNQ là hình bình hành
Suy ra MQ//PN
bài này cx đề mak bạn chỉ cần đọc lại sách vở và vẽ hình thôi là lm dk
a) Xét \(\Delta MOQ\) và \(\Delta NOP\) có:
\(OM=ON\)(O là trung điểm MN)
\(\widehat{MOQ}=\widehat{NOP}\) (đối đỉnh)
\(OP=OQ\) (O là trung điểm PQ)
\(\Rightarrow\Delta MOQ=\Delta NOP\left(c.g.c\right)\)
b) Xét \(\Delta MDO\) và \(\Delta NEO\) có:
\(MD=NE\left(gt\right)\)
\(\widehat{DMO}=\widehat{ONE}\left(\Delta MOQ=\Delta NOP\right)\)
\(OM=ON\) (O là trung điểm MN)
\(\Rightarrow\Delta MDO=\Delta NEO\left(c.g.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}OD=OE\\\widehat{DOM}=\widehat{EON}\end{matrix}\right.\)
Ta có: \(\widehat{DOM}=\widehat{EON}\left(cmt\right)\)
Mà \(\widehat{EON}+\widehat{MOE}=180^0\)(kề bù)
\(\Rightarrow\widehat{DOM}+\widehat{MOE}=180^0\Rightarrow\widehat{DOE}=180^0\)
\(\Rightarrow D,O,E\) thẳng hàng
Mà \(OD=OE\left(cmt\right)\)
=> O là trung điểm DE
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy
A I M N P R N
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)