Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
=>a=7
c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)
=>a+2=0 và b-1=0
=>a=-2 và b=1