Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(P\left(x\right)=4x^2+x^3-2x+3x-x^3+3x-2x^2\)
\(=2x^2+4x\)
Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là 0
Ta có: \(Q\left(x\right)=3x^2-3x+2-x^3+2x-x^2\)
\(=-x^3+2x^2-x+2\)
Bậc là 3
Hệ số cao nhất là -1
Hệ số tự do là 2
2) Ta có: R(x)-P(x)-Q(x)=0
\(\Leftrightarrow R\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=2x^2+4x-x^3+2x^2-x+2\)
\(=-x^3+4x^2+3x+2\)
3) Thay x=2 vào đa thức \(Q\left(x\right)=-x^3+2x^2-x+2\), ta được:
\(Q\left(2\right)=-2^3+2\cdot2^2-2+2\)
\(=-8+8-2+2=0\)
Vậy: x=2 là nghiệm của đa thức Q(x)
Thay x=2 vào đa thức \(P\left(x\right)=2x^2+4x\), ta được:
\(P\left(2\right)=2\cdot2^2+4\cdot2=2\cdot4+4\cdot2=16>0\)
Vậy: x=2 không là nghiệm của đa thức P(x)
\(P\left(x\right)=2x^2+3\)
\(Q\left(x\right)=-x^3+2x^2-x+2\)
\(Px-Qx=x^3+x+1\)
Px - Qx - Rx = 0 => Rx = -(x^3 + x +1)
Q(2) = -2^3 + 2.2^2 - 2 + 2 = 0 => x = 2 là nghiệm của Qx
P(2) = 2.2^2 + 3 = 11 khác 0 => x = 2 không phải là nghiệm của Px
-thaytoan.edu.vn-
a)P(x) = 4x2 + x3 - 2x + 3 - x - x3 + 3x - 2x2
= (4x2 - 2x2) + (x3 - x3) + (-2x - x + 3x) + 3
= 2x2 + 3
=> 2x2 + 3
Q(x) = 3x2 - 3x + 2 - x3 + 2x - x2
= (3x2 - x2) + (-3x + 2x) - x3 + 2
= 2x2 - x - x3 + 2
=> x3 - 2x2 - x + 2
c) Ta có:
P(2) = 2x2 + 3
= 2.22 + 3
= 11 (vô lý)
Q(2) = x3 - 2x2 - x + 2
= 23 - 2.22 - 2 + 2
= 0 (thỏa mãn)
Vậy x = 2 là nghiệm của Q(x) nhưng không phải là nghiệm của P(x)
a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2
=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2
=> P(x) = x3 + x - x2 + 2
Sắp xếp : P(x) = x3 - x2 + x + 2
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1
=> Q(x) = -x3 + x2 + x + 1
Sắp xếp : Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)
=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1
=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)
=> H(x) = 2x + 3
K(x) = P(x) - Q(x)
=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)
=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1
=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)
=> K(x) = 2x3 - 2x2 + 1
c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))
P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1
d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)
Vậy x = -3/2 là nghiệm của đa thức H(x)
P/s : K chắc :))
a) Mình làm tắt
P(x) = x3 - x2 + x + 2
Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
= x3 - x2 + x + 2 - x3 + x2 + x + 1
= 2x + 3
K(x) = P(x) - Q(x)
= x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )
= x3 - x2 + x + 2 + x3 - x2 - x - 1
= 2x3 - 2x2 + 1
c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1
P(-1) = 13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3
d) H(x) = 2x + 3
H(x) = 0 <=> 2x + 3 = 0
<=> 2x = -3
<=> = -3/2
Vậy nghiệm của H(x) = -3/2
a) \(P\left(x\right)=4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
\(\Rightarrow P\left(x\right)=2x^2+3\)
\(Q\left(x\right)=3x^2-3x+2-x^3+2x-x^2\)
\(\Rightarrow Q\left(x\right)=-x^3+2x^2-x+2\)
b) \(P\left(x\right)-Q\left(x\right)-R\left(x\right)=0\Rightarrow P\left(x\right)-Q\left(x\right)=P\left(x\right)\)
\(R\left(x\right)=2x^2+3-\left(-x^3+2x^2-x+2\right)=2x^2+3+x^3-2x^2+x-2=x^3+x+1\)
c) Thay x = 2 vào đa thức Q ( x) ta được :
\(\left(-2\right)^3+2\left(2\right)^2-2+2=-8+2.4-2+2=-8+8-2+2=0\)
Vậy x = 2 là nghiệm của đa thức Q (x )
Thay x = 2 vào đa thức P(x) ta được:
\(2.2^2+3=2.4+3=8.3=16\)
Vậy x = 2 là nghiệm của đa thức P (x )
a) P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
= -x3 + x2 + x + 1
b) M(x) = P(x) + Q(x)
= ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 -x3 + x2 + x + 1
= 4x3 + x2 - 3x + 8
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 + x3 - x2 - x - 1
= 6x3 - x2 - 5x + 6
c) M(x) = 4x3 + x2 - 3x + 8
M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0
( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu )
a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2
P(x) = x3 + x2 + x + 2
Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1
Q(x) = x3 + x2 - x + 1
b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
= (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)
= 2x3 + 3
P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1
= (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)
= 8x2 + 2x + 2x2 + 1
c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)2 - (-1)3 + 3.(-1) + 2
= -2 - (-2) + 1 - (-1) - 3 + 2
= 1
Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2
= 16 - 4 + 4 - 8 + 6 + 2
= 16
Đáp án:
Giải thích các bước giải:
a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2
= -2x³ + x² + x - 2
Q(x) = x³ - 2x² + 3x + 1 + 2x²
= x³ + 3x + 1
Sắp xếp theo thứ tự giảm dần của biến là:
P(x) = -2x³ + x² + x - 2
Q(x) = x³ + 3x + 1
b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1
= -x³ + x² + 4x - 1
P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1
= -4x³ + x² - 2x - 3
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
bạn giúp mình với
Bài 1:
a)
\(P=2x^32x+x^2+3x+2\) \(=4x^4+x^2+3x+2\)
\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)
\(=\left(4x^3-3x^3\right)+\left(-3x^2+4x^2\right)+\left(-3x+4x\right)+1\)
\(=x^3+x^2+x+1\)
b) \(P\left(x\right)=Q\left(x\right)+R\left(x\right)\)
\(\Rightarrow R\left(x\right)=P\left(x\right)-Q\left(x\right)=\left(4x^4+x^2+3x+2\right)+\left(x^3+x^2+x+1\right)\)
\(\Rightarrow R\left(x\right)=4x^4+x^3+\left(x^2+x^2\right)+\left(3x+x\right)+\left(2+1\right)\)
\(\Rightarrow R\left(x\right)=4x^4+x^3+2x^2+4x+3\)
Bài 2:
a) \(B\left(x\right)=-2x^2+3x-5x^2+x+3\)
\(=-\left(2x^2+5x^2\right)+\left(3x+x\right)+3\)
\(=-7x^2+4x+3\)
→ Sắp xếp: \(B\left(x\right)=-7x^2+4x+3\)
→ Bậc: 2
→ Hệ số tự do: 3
→ Hệ số cao nhất: -7