K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a)

A(x)=(-4x5+4x5)-x3+(4x2-6x2)+5x+(9-2)

      =-x3-2x2+5x+7

B(x)=-3x4-(2x3-5x3+2x3)+10x2-(8x-8x)-7

      -3x4+x3+10x2-7

b)

A(x)=       -x3- 2x+  5x+7

B(x)=-3x4+x3+10x2         -7

P(x)=-3x4-0+8x2   +5x+0

   

A(x)=       -x3- 2x+  5x+7

B(x)=-3x4+x3+10x2         -7

 Q(x)=3x4-2x3-12x10+5x+14

c)Thay x=-1 vào đt P(x)

Ta có: P(-1)=(-3)(-1)4-8(-1)2+5(-1)

                 =-3-8+5

                 =0

CHO MIK NHA

THANK!

CHÚC PN HỌC GIỎI ^ -*

3 tháng 5 2017

A(x)=- x3  -2x2+5x+7

B(x)=- 3x4 + x3+10x2-7

P(x)=- 3x4+8x2+5x

Q(x)=3x4-2x3-12x2+5x+14

thay x=-1 vào P(x)   =>P(x)=0  => x= -1 là nghiệm của đa thức

20 tháng 7 2017

a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2

= - x3 - 2x2 + 5x + 7

B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x

= - 3x4 + x3 + 10x2 - 7

b) P(x) = A(x) + B(x)

= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7

= - 3x4 + 8x2 + 5x

Q(x) = A(x) - B(x)

= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)

= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7

= 3x4 - 2x3 - 12x2 + 5x + 14

c) Thế x = -1 vào đa thức P(x), ta có:

P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0

Vậy x = -1 là nghiệm của đa thức P(x).

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+3x^2-2x-2=0\)

\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)

b) Đặt \(G_{\left(x\right)}=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(S=\left\{-\frac{1}{3}\right\}\)

c) Đặt \(A_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2-4=0\)

\(\Leftrightarrow2x^2=4\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

d) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2+3x-5=0\)

\(\Leftrightarrow2x^2+5x-2x-5=0\)

\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)

e) Đặt P=0

\(\Leftrightarrow3x^2+4x^2+6x+3=0\)

\(\Leftrightarrow7x^2+6x+3=0\)

\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)

mà 7>0

nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)

\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)

Vậy: S=∅

3 tháng 5 2017

a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5

=-x4-2x3-2x-5

Bậc của đa thức:4

Hệ số cao nhất:-1

Hệ số tự do:-5

N(x)=(-x4+2x4)+2x3-x2+3x+5

=x4+2x3-x2+3x+5

Bậc của đa thức:4

Hệ số cao nhất:1

Hệ số tự do:5

b)Thay x=-1 vào N(x) ta có:

(-1)4+2.(-1)3-(-1)2+3.(-1)+5

=1-2-1-3+5

=0

c)P(x)-M(x)=N(x)

=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)

=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)

=-x2+x

d)P(x)=-x2+x=-x(x-1)

Cho P(x)=0=>-x(x-1)=0

<=>-x=0 hoặc x-1=0

<=>x=0 hoặc x=1

Vậy...

8 tháng 5 2017

Ôn tập toán 7

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)