Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .
A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B
Bài 2 :
a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)
\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)
\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)
\(A=\frac{x-2}{x+2}\)
c) Thay x = 4 ta có :
\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)
Vậy.........
\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)
\(\left(5x-2\right)\left(25x^2+10x+4\right)\)
\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)
\(=\left(5x\right)^3-2^3\)
\(=125x^3-8\)
\(x^3y-5x^2y-2xy+10y\)
\(=\left(x^3y-2xy\right)+\left(10y-5x^2y\right)\)
\(=xy\left(x^2-2\right)+5y\left(2-x^2\right)\)
\(=xy\left(x^2-2\right)-5y\left(x^2-2\right)\)
\(=\left(xy-5y\right)\left(x^2-2\right)\)
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
Vì \(x^2y^3⋮x^2y^2;x^3y^2⋮x^2y^2\)
nên A chia hết cho B