Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia 92 số tự nhiên này cho 91, theo nguyên lý Đi - ric- lê tồn tại có 2 số có cùng số dư . Gọi 2 số đó là :abc và mnp . Ta có:
abcmnp=1000.abc+mnp=1000(91k+r)+(91q+r)
=91(1000k+q)+1001r
=91(1000k+q)+91.11r chia hết cho 91
Gọi số tự nhiên N cần tìm là abcdefg . Gọi tổng các chữ số là A .
Ta có : \(1+0+2+3+4+5+6\le A\le9+8+7+6+5+4+3\)hay \(21\le A\le42\)
( Vì không có 2 chữ số nào giống nhau )
Vì tổng các chữ số chia hết cho 7 nên \(A\)thuộc { 21 ; 28 ; 35 ; 42 }
Xét tổng các chữ số là 21 .
Ta cần sắp xếp các chữ số 0 , 1 , 2 , 3 , 4 , 5 , 6 thành số có 7 chữ số chia hết cho 7 và số đó nhỏ nhất .
Vì đề bài , N là số tự nhiên nhỏ nhất nên ta có số 1023456 .
Thử lại thì thấy \(1023456⋮7\)
Vì thế , không cần xét trường hợp nào nữa .
Vậy số tự nhiên N là \(1023456\)
1) gọi hai số là x và y
ta có x + y = 65; x - y = 11
=> x = (65 + 11): 2 = 38
=> y = 38 - 11 = 27
2) gọi hai số là x và y
ta có x + y = 75 và x = 2y
=> 2y + y = 3y = 75
=> y = 25; x = 50
Lấy 12 số này chia cho 11 ta được 10 số dư trong các số 0;1;2;3;4;5;6;7;8;9. Theo nguyên tắc Direchlet thì phải có ít nhất có hai số có cùng số dư. Nên hiệu hai số này chia hết 12. Khi đó chúng có 2 cs tận cùng giống nhau
Hơi sai sai nhỉ