Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9x}{2-x}+\dfrac{2}{x}=\dfrac{9x}{2-x}+\dfrac{2-x}{x}+1\ge2\sqrt{\dfrac{9x}{2-x}.\dfrac{2-x}{x}}+1=2.3+1=7\)
GTNN của A là 7 khi x=0,5
\(A=\dfrac{9x}{2-x}+\dfrac{2}{x}=\dfrac{9x}{2-x}+\dfrac{2-x+x}{x}=\dfrac{9x}{2-x}+\dfrac{2-x}{x}+1\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{9x}{2-x}+\dfrac{2-x}{x}\) ≥ \(2\sqrt{\dfrac{9x}{2-x}.\dfrac{2-x}{x}}=2.3=6\)
⇔ \(\dfrac{9x}{2-x}+\dfrac{2-x}{x}+1\text{≥}6+1=7\)
⇒ \(A_{Min}=7."="\text{⇔}x=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\geq 4\sqrt[4]{a^2.a^2.\frac{b^2}{4}.\frac{1}{a^2}}\)
\(\Rightarrow 1\geq \frac{a^2b^2}{4}\Rightarrow a^2b^2\leq 4\Rightarrow -2\leq ab\leq 2\)
Do đó:
\(-2+2019\leq ab+2019\leq 2+2019\Leftrightarrow 2017\leq S\leq 2021\)
Vậy \(S_{\min}=2017\Leftrightarrow (a,b)=(1;-2)\) hoặc \((-1;2)\)
\(S_{\max}=2021\Leftrightarrow (a,b)=(1;2)\) hoặc \((-1;-2)\)
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
Áp dụng BĐT Cô-si ta có
\(\dfrac{a}{a^2+1}\) + \(\dfrac{5\left(a^2+1\right)}{2a}\) \(\ge\sqrt{\dfrac{5}{2}}\)
Dấu "=" xảy ra <=> 2a2 = ( a2 +1 )2
=>\(\left[{}\begin{matrix}a^2+1=2a\\a^2+1=-2a\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}a^2-2a+1=0\\a^2+2a+1=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\left(a-1\right)^2=0\\\left(a+1\right)^2=0\end{matrix}\right.\) => (a - 1)2 = 0 (vì a + 1 >0)
=> a = 1
Vậy Pmin = \(\sqrt{\dfrac{5}{2}}\) <=>a = 1
P = \(\dfrac{a}{a^2+1}\) + \(\dfrac{a^2+1}{4a}\) + \(\dfrac{9\left(a^2+1\right)}{4a}\)
Cô-si 2 con đầu ra a = 1
thay a = 1 => P = \(\dfrac{11}{2}\)
Lời giải:
\(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\Rightarrow ax=\sqrt{\frac{2a-b}{b}}\)
\(\Rightarrow 1+ax=\frac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}; 1-ax=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\)
\(\Rightarrow \frac{1-ax}{1+ax}=\frac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2(b-a)}\)
Lại có:
\(\frac{1+bx}{1-bx}=\frac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\frac{a^2-(2ab-b^2)}{(a-\sqrt{2ab-b^2})^2}=\frac{(a-b)^2}{(a-\sqrt{2ab-b^2})^2}\)
\(\Rightarrow \sqrt{\frac{1+bx}{1-bx}}=\frac{b-a}{a-\sqrt{2ab-b^2}}\)
Do đó:
$A=\frac{(\sqrt{b}-\sqrt{2a-b})^2}{2a-2\sqrt{2ab-b^2}}=\frac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1$