Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
A = {x\(\in\) R; -5 \(\le\) x < 7}
\(\Rightarrow\) A = [-5;7)
\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))
Đáp án: D
a/ \(\Leftrightarrow\left[{}\begin{matrix}a>1\\\frac{a+1}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>1\\a< -3\end{matrix}\right.\)
b/ \(\left(-\infty;5\right)\cup\left(-3;+\infty\right)=R\) nên với mọi a thì \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;+\infty\right)\)
ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)
\(\Leftrightarrow4x-3>0\)
\(\Rightarrow x>\frac{3}{4}\)
\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)
Chẳng đáp án nào đúng cả :)
a/ A = (3;\(+\infty\)), B=[0;4]
A \(\cap\) B= (3;4)
A\(\cup\) B=[0;+\(\infty\))
A\B= (4;\(+\infty\))
B\A= [0;3]
b/ A=(\(-\infty\);4], B=(2;\(+\infty\))
A\(\cap\)B=(2;4]
A\(\cup\)B= R
A\B= (\(-\infty\);2]
B\A=(4;\(+\infty\))
c/ A=[0;4] , B=(\(-\infty\);2]
A\(\cap\)B= [0;2)
\(A\cup B\) = (\(-\infty\);4]
A\ B=[2;4]
B\A=(\(-\infty\);0)
Đúng bạn
- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)
- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử
- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử
Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử
hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ
Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........
\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)