\(\left(-\infty;a\right)\cup...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

B

20 tháng 9 2019

ta có:

A = {x\(\in\) R; -5 \(\le\) x < 7}

\(\Rightarrow\) A = [-5;7)

\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))

Đáp án: D

NV
28 tháng 9 2020

a/ \(\Leftrightarrow\left[{}\begin{matrix}a>1\\\frac{a+1}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>1\\a< -3\end{matrix}\right.\)

b/ \(\left(-\infty;5\right)\cup\left(-3;+\infty\right)=R\) nên với mọi a thì \(\left[a;\frac{a+1}{2}\right]\in\left(-\infty;5\right)\cup\left(-3;+\infty\right)\)

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

16 tháng 5 2017

a) Sai

b) Sai

c) Đúng

d) Sai

2 tháng 8 2018

a) Sai;

b) Sai;

c) Đúng;

d) Sai;

26 tháng 7 2017

a/ A = (3;\(+\infty\)), B=[0;4]

A \(\cap\) B= (3;4)

A\(\cup\) B=[0;+\(\infty\))

A\B= (4;\(+\infty\))

B\A= [0;3]

b/ A=(\(-\infty\);4], B=(2;\(+\infty\))

A\(\cap\)B=(2;4]

A\(\cup\)B= R

A\B= (\(-\infty\);2]

B\A=(4;\(+\infty\))

c/ A=[0;4] , B=(\(-\infty\);2]

A\(\cap\)B= [0;2)

\(A\cup B\) = (\(-\infty\);4]

A\ B=[2;4]

B\A=(\(-\infty\);0)

NV
27 tháng 9 2020

Đúng bạn

- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)

- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử

- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử

Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử

27 tháng 9 2020

hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........