K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3 

a^2 + 2ab + 2b^2 - 2b= 8

<=> (a^2 + 2ab + b^2) + (b^2 - 2b + 1)=9

<=>(a + b)^2 + (b - 1)^2=9

Vì (b - 1)^2 >=0 nên (a + b)^2 =< 9

                            => a + b =< 3.

2 tháng 4 2019

tks. đề thi hsg mk đấy

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 6 2020

Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:

a2 -2ab + 2b2 - 4a + 8 < hoặc = 0

<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0

<=> ( a-2b)2 + (a-4)2 < hoặc = 0

Dấu "=" xảy ra khi :

a=4;b=2

26 tháng 7 2021

Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:

a2 -2ab + 2b2 - 4a + 8 < hoặc = 0

<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0

<=> ( a-2b)2 + (a-4)2 < hoặc = 0

Dấu "=" xảy ra khi :

a=4;b=2

29 tháng 5 2018

a + b + 2a2 + 2b2\(2ab+2a\sqrt{b}+2b\sqrt{a}\)

⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0

⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0

⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )

29 tháng 5 2018

Dấu \("="\) xảy ra khi ....................