K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Trên olm rất ít người học lớp 9 dùng , bạn có thể lên Hh để các thầy cô giảng cho nhé !

30 tháng 9 2018

con cac 

26 tháng 10 2020

với 0<a<1

3 tháng 9 2018

\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\).\(\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(\left[\left(\frac{\sqrt{a}}{2}\right)^2-2\frac{\sqrt{a}}{2}\frac{1}{2\sqrt{a}}+\left(\frac{1}{2\sqrt{a}}\right)^2\right]\).\(\left[\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{a-1}\right]\)

=\(\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1\right)^2}{a-1}\cdot\frac{\left(\sqrt{a}+1\right)^2}{a-1}\right]\)

=\(\left(\frac{a^2}{4a}-\frac{2a}{4a}+\frac{1}{4a}\right)\).\(\left[\frac{\left[\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\right]\cdot\left[\left(\sqrt{a}-1\right)+\left(\sqrt{a}+1\right)\right]}{a-1}\right]\)

=\(\left(\frac{a^2-2a+1}{4a}\right)\).\(\left[\frac{\left(\sqrt{a}-1-\sqrt{a}+1\right).\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right]\)

=\(\frac{\left(a-1\right)^2}{1}\).\(\frac{-4\sqrt{a}}{a-1}\)

=\(\frac{-\left(a-1\right)}{1}\)= - a + 1

hok tốt 

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

23 tháng 7 2018

Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao

23 tháng 7 2018

M ngon m làm đi nói nhiều 

\(p=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\frac{\left(a-1\right)^2}{\left(2\sqrt{a}\right)^2}.\frac{a-2a+1-a-2a-1}{\left(a-1\right)}\)

\(=\frac{\left(a-1\right)^2}{4a}.\frac{-4\sqrt{a}}{\left(a-1\right)}\)

\(=\frac{1-a}{\sqrt{a}}\)

\(b,\)Để P < 0 thì \(\frac{1-a}{\sqrt{a}}< 0\)

\(\sqrt{a}>0\)

\(1-a< 0\Rightarrow a>1\)

Vậy x > 1 thì P < 0