K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình chữ nhật

23 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Có AH ⊥ CD ⇒ ∆ AHD vuông tại H

E là trung điểm của AD ⇒ HE là trung tuyến ứng với cạnh huyền AD

⇒ HE = 1/2 AD (1)

*F là trung điểm của BC ⇒ CF = 1/2 BC (2)

Mà ABCD là hình thang cân ⇒ BC = AD (3)

Từ (1), (2) và (3) ta có: HE = CF (*)

*Mặt khác: EH = ED = 1/2 AD (Chứng minh trên)

⇒  ∆ EHD cân tại E

⇒ ∠ (EHD) =  ∠ (EDH)

Mà  ∠ (EDH) =  ∠ (FCH) (góc đáy hình thang cân)

⇒  ∠ (FCH) =  ∠ (EHD) (cùng bằng  ∠ (EDH))

⇒EH // FC (2 góc ở vị trí đồng vị bằng nhau) (**)

Từ (*) và (**) ⇒ EFCH là hình bình hành (1 cặp cạnh song song và bằng nhau)

4 tháng 10 2016

Duyệt quài 

14516588_210127179407106_7535715929627341863_n.jpg?oh=fa0580fc822b8af83e7acf8422f3cedb&oe=5877CE37

14502985_210127182740439_2583683399976049234_n.jpg?oh=0ea7fa9d15e7ac3e66db12b402e20bd9&oe=5875F563

14492540_210127186073772_1730612685678906418_n.jpg?oh=a0473181514af33c9894e27cc63a809d&oe=5870673F

4 tháng 10 2016

Trần Thùy Dung chữ xấu quá

16 tháng 11 2019

Ta có:

E là trung điểm của AD (gt), F là trung điểm của BC (gt) nên EF là đường trung bình của hình thang ABCD.

\(\Rightarrow\) EF // CD hay EF // CH.

\(\Delta\)AHD vuông tại H có HE là đường trung tuyến thuộc cạnh huyền AD.

Ta có: HE = ED = \(\frac{1}{2}\) AD (tính chất tam giác vuông)

\(\Rightarrow\Delta\) EDH cân tại E \(\Rightarrow\widehat{D}\)\(\widehat{H}\) 1(tính chất tam giác cân)

\(\widehat{D}\)=\(\widehat{C}\)(vì ABCD là hình thang cân)

\(\Rightarrow\)\(\widehat{H}\)= \(\widehat{C}\)\(\Rightarrow\) EH // CF (vì có cặp góc đồng vị bằng nhau)

Vậy tứ giác EFCH là hình bình hành.

#Trang

14 tháng 5 2022

refer

undefined

9 tháng 11 2017

A B C D P Q E F
a) Có \(DE=\frac{1}{2}DA\)\(BF=\frac{1}{2}BC\).
Tứ giác ABCD là hình bình hành nên DE = BC suy ra DE = BF.
Mà DE // BF.
Vì vậy tứ giác BEDF là hình bình hành.
b) Theo chứng minh câu a tứ giác BEDF là hình bình hành suy ra BE // DF.
Xét tam giác ADQ có E là trung điểm của DA và AB // DQ nên P là trung điểm của AQ.
Vì vậy AP = PQ. (1)
Xét tam giác BCP có F là trung điểm của BC và FD // BE nên Q là trung điểm của của PC.
Vì vậy PQ = QC. (2)
Từ (1) và (2) suy ra: AP = PQ = QC.
c)Do AE // BC nên áp dụng định lý Ta-lét:
\(\frac{AP}{PB}=\frac{EP}{PB}=\frac{1}{2}\).
Suy ra \(EP=\frac{1}{2}PB\).
Mặt khác R là trung điểm của PB nên PR = RB \(=\frac{1}{2}PB\).
Từ đó suy ra \(EP=PR=RB\).
Vậy P là trung điểm của AR và ta cũng có P là trung điểm AQ nên tứ giác ARQE là hình bình hành.


 

25 tháng 8 2018

Bài này mình làm xong rồi nhưng lỡ tay bấm nút hủy.

MONG CÁC BẠN  

a: Xét tứ giác BEFA có

BE//AF

BE=FA

BE=BA

=>BEFA là hình thoi

b: góc B=180-60=120 độ

=>góc IBE=60 độ

mà IB=BE

nên ΔIBE đều

=>góc EIB=60 độ=góc A

=>AIEF là hình thang cân

c:

Xét ΔABD có

BF là trung tuyến

BF=AD/2

Do đo: ΔABD vuông tại B

Xét tứ giác BICD có

BI//CD

BI=CD

góc IBD=90 độ

Do đó: BICD là hình chữ nhật

d: Xét ΔAED có

EF là trung tuyến

EF=AD/2

=>ΔAED vuông tại E

=>góc AED=90 độ

27 tháng 10 2021

Bị che một nửa góc rồi bạn ơi

a: Xét tứ giác BEDF có 

DE//BF

DE=BF

Do đó: BEDF là hình bình hành

b: Xét ΔAQD có 

E là trung điểm của AD

EP//QD

Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)

Xét ΔCPB có 

F là trung điểm của BC

FQ//BP

Do đó: Q là trung điểm của CP

Suy ra: QC=PQ(2)

Từ (1) và (2) suy ra AP=PQ=QC