\(\pi=3,1415..........">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 9 2020

ĐKXĐ:

a/ \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

b/ \(sin\left(2x-7\pi\right)\ne0\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{2}\)

c/ \(sin\left(4x+5\pi\right).cos\left(2x-3\pi\right)\ne0\)

\(\Leftrightarrow sin4x.cos2x\ne0\)

\(\Leftrightarrow sin4x\ne0\) (vì \(sin4x=2sin2x.cos2x\) đã bao hàm luôn \(cos2x\) trong đó)

\(\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{4}\)

NV
31 tháng 5 2020

\(y=2+2cos\left(x-\frac{\pi}{6}\right)-7=2cos\left(x-\frac{\pi}{6}\right)-5\)

\(0\le x\le\pi\Rightarrow-\frac{\pi}{6}\le x-\frac{\pi}{6}\le\frac{5\pi}{6}\)

\(\Rightarrow-\frac{\sqrt{3}}{2}\le cos\left(x-\frac{\pi}{6}\right)\le1\)

\(\Rightarrow-\sqrt{3}-5\le y\le-3\)

\(y_{min}=-\sqrt{3}-5\) khi \(x=\pi\)

\(y_{max}=-3\) khi \(x=\frac{\pi}{6}\)

31 tháng 5 2020

Nguyễn Lê Phước ThịnhPhạm Vũ Trí DũngMiyuki Misaki

giúp e vs ạ

NV
16 tháng 9 2020

\(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(x=-\frac{5\pi}{6}\)

\(y_{max}=2\) khi \(x=\frac{\pi}{6}\)

31 tháng 8 2017

1/
pt<=>tan(3x+2)=tan\(\dfrac{\Pi}{3}\)
<=>x=\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)(k thuộc Z) (*)

mà x\(\in\)(\(-\dfrac{\Pi}{2}\);\(\dfrac{\Pi}{2}\))

<=>\(-\dfrac{\Pi}{2}\)<\(\dfrac{\Pi}{9}\)-\(\dfrac{2}{3}\)+\(\dfrac{k\Pi}{3}\)<\(\dfrac{\Pi}{2}\)(bạn giải bất pt với nghiệm là ''k'' nha)

<=>-1,1296....<k<1,803....

Mà k thuộc Z =>k={-1;01}

Thay các giá trị của k vào (*) ta được:

\(\left[{}\begin{matrix}x=-\dfrac{2\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{\Pi}{9}-\dfrac{2}{3}\\x=\dfrac{4\Pi}{9}-\dfrac{2}{3}\end{matrix}\right.\)

Vậy.............

2/ Là tương tự cho quen nha!

15 tháng 9 2019

sao ra đc -1,1296... vậy

NV
25 tháng 6 2019

Câu 1:

\(\Leftrightarrow sinx.cos\frac{\pi}{3}-cosx.sin\frac{\pi}{3}+2\left(cosx.cos\frac{\pi}{6}+sinx.sin\frac{\pi}{6}\right)=0\)

\(\Leftrightarrow sinx+\frac{1}{\sqrt{3}}cosx=0\)

Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cosx\)

\(tanx+\frac{1}{\sqrt{3}}=0\Rightarrow tanx=-\frac{1}{\sqrt{3}}\Rightarrow x=\frac{\pi}{6}+k\pi\)

Câu 2:

\(\Leftrightarrow1-cos6x=1+cos2x\)

\(\Leftrightarrow-cos6x=cos2x\)

\(\Leftrightarrow cos\left(\pi-6x\right)=cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pi-6x+k2\pi\\2x=6x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

NV
25 tháng 6 2019

Câu 3:

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}-4\pi\right)+cos2x=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{2}\right)+cos2x=1\)

\(\Leftrightarrow cos2x+cos2x=1\)

\(\Leftrightarrow cos2x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Câu 4:

\(\sqrt{2}\left(cosx.cos\frac{3\pi}{4}+sinx.sin\frac{3\pi}{4}\right)=1+sinx\)

\(\Leftrightarrow-cosx+sinx=1+sinx\)

\(\Leftrightarrow cosx=-1\Rightarrow x=\pi+k\pi2\)

Câu 5:

Giống câu 3, chắc bạn ghi nhầm đề